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The setting

We will consider the billiards dynamics in a L-shaped table U
depending on parameters a0,a1,b0,b1 > 0.
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b0

b1

U
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Constructing a translation surface from the billiards
table

Some of the considerations from a rectangular table are still valid: the
direction θ of a trajectory changes to sh(θ) := −θ after a rebound on an
horizontal side of U, to sv (θ) := π − θ after a rebound to a vertical side of U.

We set sO(θ) := π+ θ. We have sO = sh ◦ sv = sv ◦ sh. If a trajectory starts at
time 0 in the direction θ(0) = θ0, its direction θ(t) at any time t can only take
one of the values ±θ0, π ± θ0.

We define the linear symmetries Sh, Sv of R2 associated to sh, sv , and their
composition SO = Sh ◦ Sv = Sv ◦ Sh. The linear maps id ,Sh,Sv ,SO form a
group G (the Klein group).

We consider four symmetric copies U, Sh(U), Sv (U), SO(U) that we glue
together according to the following rule:

For any g ∈ G, any horizontal side C of g(U) is glued through Sh to the
side Sh(C) of Sh ◦ g(U), and any vertical side C of g(U) is glued through
Sv to the side Sv (C) of Sv ◦ g(U).
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The four copies before glueing
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Parallel sides with the same label must still be identified. Vertices with the
same name correspond to the same point on M.
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Attaching a handle to a sphere
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U

Sh(U)

Sv(U)

SO(U)

The local picture at the special point O
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The translation surface M

Denote by M the space obtained by glueing the four copies of
U.

I The vertices of the copies of U correspond to points
A,B,C,D,E ,O on M.

I From the topological point of view, M is a sphere with two
handles attached . One says that M is a surface of genus
2. The torus T2 := R2/Z2 is a surface of genus 1.

I The total angle around A,B,C,D,E is 2π, but the total
angle around O is 6π. Any point of M except O has a
natural local system of coordinates , well-defined up to
translation.
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Linear flows on M

Let u, v be real parameters. The differential equation

dx
dt

= u,
dy
dt

= v ,

(where (x , y) is any system of natural local coordinates on
M − {O}), defines a flow Φt

u,v on M.

The motion is stopped at O. Otherwise, we have the flow
relation Φt+t ′

u,v = Φt
u,v ◦ Φt ′

u,v .
Let (x(t), y(t)) be a billiards trajectory in U starting at time 0
from (x0, y0) in the direction θ0. Set u = cos θ0, v = sin θ0.
As in the rectangular case, the direction θ(t) at time t and the
position (x(t), y(t)) are determined by the position Φt

u,v (x0, y0)
in M.
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Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)
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M-rational and M-irrational directions

Let (u, v) 6= (0,0) be parameters in R2.

Definition: The linear flow Φu,v on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).
The corresponding direction (such that tan θ = v

u ) is then said to be
M-rational.
Example: For instance, the horizontal and vertical directions are
always M-rational.
If the flow Φu,v does not have a connection, the corresponding
direction is said to be M-irrational.

Exercise: Show that there are only countably many rational
directions. In particular, a randomly chosen direction is irrational.

Exercise: Assume that the parameters a0,a1,b0,b1 of the table U
are rational. Then a direction θ is M-rational iff tan θ ∈ Q ∩∞.
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Minimality for M-irrational directions

Theorem: (Keane)
Let (u, v) 6= (0,0) be parameters in R2 such that the associated
direction is M-irrational.

Then, the flow Φu,v is minimal: for every initial condition p0 ∈ M,
the orbit (Φt

u,v (p0)t>0 either stops at O or is dense in M.

Corollary: If Φu,v has a periodic orbit, the corresponding
direction is M-rational.

Exercise: Let a0 = b0 = a1 = 1 . Show that the diagonal
direction θ = π

4 is M-rational. Show that
1. If b1 is rational, every orbit (Φt

1,1(p0)t>0 either stops at O or
is periodic.

2. If b1 is irrational, every orbit (Φt
1,1(p0)t>0 either stops at O

or is dense in M.
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Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting
from some point p ∈ U in the direction θ (at unit speed).

For T > 0, let h0(p, θ,T ) be the number of times the trajectory
hits the small horizontal side of size a0.
Define similarly h1(p, θ,T ), v0(p, θ,T ), v1(p, θ,T ).
Write

N(p, θ,T ) := (h0(p, θ,T ),h1(p, θ,T ), v0(p, θ,T ), v1(p, θ,T )) ∈ Z4.

Remark: Let h(p, θ,T ) be the number of times the trajectory hits the large
horizontal side of size a0 + a1. Check that one has, for all time T

|h0(p, θ,T ) + h1(p, θ,T )− h(p, θ,T )| 6 1|.

A similar inequality holds for the number of hits on the large vertical side.
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The closed geodesic loops on M associated to the sides of the
table U
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Heuristics on expected hitting statistics

I Set u = cos θ, v = sin θ. Let S := a0b0 + a0b1 + a1b0 be the area of the
table U.

I The hitting statistics hi (p, θ,T ), vi (p, θ,T ) (i = 0, 1) are the number of
intersections of the segment (Φt

u,v (p))t∈[0,T ] on M with the geodesic
loops H0, H1, V0, V1 on M.

I After intersecting the geodesic loop H, a trajectory of the flow Φu,v will
intersect either H0 or H1 before intersecting again H. The return time to
H is 2|v |−1(b0 + b1) in the first case, 2|v |−1b0 in the second case.

I One ”expects” (uniform distribution of intersections with H) that the
probability of hitting H0 or H1 is proportional to the length, respectively

a0
a0+a1

and a1
a0+a1

.

I Then the expected time to get h intersections with H is of the order of

T (h) ≈ 2h[|v |−1(b0 + b1)
a0

a0 + a1
+ |v |−1b0

a1

a0 + a1
] = 2h|v |−1 S

a0 + a1
.

I The expected sizes of h0(p, θ,T ) and h1(p, θ,T ) are thus | sin θ| a0
2S T

and | sin θ| a1
2S T respectively.
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction θ has the uniform distribution
property if any billiards trajectory with initial direction θ not running
into the vertex O satisfies the expected statistics

lim
T→∞

1
T

N(p, θ,T ) =
1

2S
(| sin θ|a0, | sin θ|a1, | cos θ|b0, | cos θ|b1).

A big difference with the genus 1 case is

Proposition: Assume that a0
a1

is neither rational nor a
quadratic irrational. Then there exist M-irrational directions
which do not have the uniform distribution property.
However, these directions are exceptional.

Theorem: (Masur, Veech) For any parameters a0,a1,b0,b1,
almost all directions have the uniform distribution property.
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Rate of convergence

Let θ be a direction having the uniform distribution property.

Then the difference

R(p, θ,T ) := N(p, θ,T )− T
2S

(| sin θ|a0, | sin θ|a1, | cos θ|b0, | cos θ|b1) ∈ R4

has size o(T ).
Can we improve on this estimate?
In the genus 1 case considered this morning

I when the irrational direction is very well approximated by
rational directions (the Liouville case), one cannot improve
significantly on o(T );

I on the other hand, for almost all directions (the diophantine
case), one can obtain the much better estimate o(T ε), for
any ε > 0.
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Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)



Rate of convergence

Let θ be a direction having the uniform distribution property.
Then the difference

R(p, θ,T ) := N(p, θ,T )− T
2S

(| sin θ|a0, | sin θ|a1, | cos θ|b0, | cos θ|b1) ∈ R4

has size o(T ).
Can we improve on this estimate?
In the genus 1 case considered this morning

I when the irrational direction is very well approximated by
rational directions (the Liouville case), one cannot improve
significantly on o(T );

I on the other hand, for almost all directions (the diophantine
case), one can obtain the much better estimate o(T ε), for
any ε > 0.
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The Zorich phenomenon
The following facts were first discovered experimentally (in a much more
general setting) by A.Zorich, with suggestions of M.Kontsevich.

Zorich also proposed an explanation. The complete proof depends on work
of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

I For almost all parameters a0,a1,b0,b1 and almost all
directions θ, one has, for any p ∈ U

lim sup
T→∞

log ||R(p, θ,T )||
log T

=
1
3
.

I For any rational parameters a0,a1,b0,b1 and almost all
directions θ, one has, for any p ∈ U

lim sup
T→∞

log ||R(p, θ,T )||
log T

=
1
3
.
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I For a0,a1,b0,b1, θ as above, there exists a 2-dimensional
plane P := P(a0,a1,b0,b1, θ) in R4 containing the line R`
(` being the limit of 1

T N(p, θ,T ) given above) such that the
distance of N(p, θ,T ) to P stays o(T ε), for any ε > 0.

Unfortunately, there is no ”elementary” proof of these results at
this moment.
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Thanks for your attention
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