Translation surfaces and their geodesics (II)

Jean-Christophe Yoccoz

Collège de France, Paris

ISSMYS, ENSL, Lyon, August 28, 2012

Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)

We will consider the billiards dynamics in a *L*-shaped table *U* depending on parameters $a_0, a_1, b_0, b_1 > 0$.

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_h(\theta) := -\theta$ after a rebound on an horizontal side of U, to $s_v(\theta) := \pi - \theta$ after a rebound to a vertical side of U.

伺下 イヨト イヨト

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_h(\theta) := -\theta$ after a rebound on an horizontal side of U, to $s_v(\theta) := \pi - \theta$ after a rebound to a vertical side of U.

We set $s_O(\theta) := \pi + \theta$. We have $s_O = s_h \circ s_v = s_v \circ s_h$. If a trajectory starts at time 0 in the direction $\theta(0) = \theta_0$, its direction $\theta(t)$ at any time *t* can only take one of the values $\pm \theta_0$, $\pi \pm \theta_0$.

A (1) < (1) < (2) < (2) </p>

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_h(\theta) := -\theta$ after a rebound on an horizontal side of U, to $s_v(\theta) := \pi - \theta$ after a rebound to a vertical side of U.

We set $s_O(\theta) := \pi + \theta$. We have $s_O = s_h \circ s_v = s_v \circ s_h$. If a trajectory starts at time 0 in the direction $\theta(0) = \theta_0$, its direction $\theta(t)$ at any time *t* can only take one of the values $\pm \theta_0$, $\pi \pm \theta_0$.

We define the linear symmetries S_h , S_v of \mathbb{R}^2 associated to s_h , s_v , and their composition $S_O = S_h \circ S_v = S_v \circ S_h$. The linear maps id, S_h , S_v , S_O form a group G (the Klein group).

・ 戸 ト ・ 三 ト ・ 三 ト

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_h(\theta) := -\theta$ after a rebound on an horizontal side of U, to $s_v(\theta) := \pi - \theta$ after a rebound to a vertical side of U.

We set $s_O(\theta) := \pi + \theta$. We have $s_O = s_h \circ s_v = s_v \circ s_h$. If a trajectory starts at time 0 in the direction $\theta(0) = \theta_0$, its direction $\theta(t)$ at any time *t* can only take one of the values $\pm \theta_0$, $\pi \pm \theta_0$.

We define the linear symmetries S_h , S_v of \mathbb{R}^2 associated to s_h , s_v , and their composition $S_O = S_h \circ S_v = S_v \circ S_h$. The linear maps id, S_h , S_v , S_O form a group G (the Klein group).

We consider four symmetric copies U, $S_h(U)$, $S_v(U)$, $S_O(U)$ that we glue together according to the following rule:

・ロット (母) ・ ヨ) ・ コ)

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_h(\theta) := -\theta$ after a rebound on an horizontal side of U, to $s_v(\theta) := \pi - \theta$ after a rebound to a vertical side of U.

We set $s_O(\theta) := \pi + \theta$. We have $s_O = s_h \circ s_v = s_v \circ s_h$. If a trajectory starts at time 0 in the direction $\theta(0) = \theta_0$, its direction $\theta(t)$ at any time *t* can only take one of the values $\pm \theta_0$, $\pi \pm \theta_0$.

We define the linear symmetries S_h , S_v of \mathbb{R}^2 associated to s_h , s_v , and their composition $S_O = S_h \circ S_v = S_v \circ S_h$. The linear maps id, S_h , S_v , S_O form a group G (the Klein group).

We consider four symmetric copies U, $S_h(U)$, $S_v(U)$, $S_O(U)$ that we glue together according to the following rule:

For any $g \in G$, any horizontal side *C* of g(U) is glued through S_h to the side $S_h(C)$ of $S_h \circ g(U)$, and any vertical side *C* of g(U) is glued through S_v to the side $S_v(C)$ of $S_v \circ g(U)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

The four copies before glueing

물 에 제 물 에 다

æ

Parallel sides with the same label must still be identified. Vertices with the same name correspond to the same point on M.

Attaching a handle to a sphere

ヨトメヨト

æ

The local picture at the special point O

문 > 문

< □ > < □ > < □ > .

The vertices of the copies of U correspond to points A, B, C, D, E, O on M.

- The vertices of the copies of U correspond to points A, B, C, D, E, O on M.
- From the topological point of view, *M* is a sphere with two handles attached. One says that *M* is a *surface of genus* 2. The torus T² := ℝ²/Z² is a surface of genus 1.

A (1) < (1) < (2) < (2) </p>

- The vertices of the copies of U correspond to points A, B, C, D, E, O on M.
- From the topological point of view, *M* is a sphere with two handles attached. One says that *M* is a *surface of genus* The torus T² := ℝ²/Z² is a surface of genus 1.
- The total angle around A, B, C, D, E is 2π, but the total angle around O is 6π. Any point of M except O has a natural local system of coordinates, well-defined up to translation.

< 同 > < 回 > < 回 > <

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v,$$

(where (x, y) is any system of natural local coordinates on $M - \{O\}$), defines a flow $\Phi_{u,v}^t$ on M.

過 とう ヨ とう ヨ とう

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v,$$

(where (x, y) is any system of natural local coordinates on $M - \{O\}$), defines a flow $\Phi_{u,v}^t$ on M.

The motion is stopped at *O*. Otherwise, we have the flow relation $\Phi_{u,v}^{t+t'} = \Phi_{u,v}^t \circ \Phi_{u,v}^{t'}$.

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v,$$

(where (x, y) is any system of natural local coordinates on $M - \{O\}$), defines a flow $\Phi_{u,v}^t$ on M.

The motion is stopped at *O*. Otherwise, we have the flow relation $\Phi_{u,v}^{t+t'} = \Phi_{u,v}^t \circ \Phi_{u,v}^{t'}$.

Let (x(t), y(t)) be a billiards trajectory in *U* starting at time 0 from (x_0, y_0) in the direction θ_0 .

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v,$$

(where (x, y) is any system of natural local coordinates on $M - \{O\}$), defines a flow $\Phi_{u,v}^t$ on M.

The motion is stopped at *O*. Otherwise, we have the flow relation $\Phi_{u,v}^{t+t'} = \Phi_{u,v}^t \circ \Phi_{u,v}^{t'}$.

Let (x(t), y(t)) be a billiards trajectory in *U* starting at time 0 from (x_0, y_0) in the direction θ_0 . Set $u = \cos \theta_0$, $v = \sin \theta_0$.

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v,$$

(where (x, y) is any system of natural local coordinates on $M - \{O\}$), defines a flow $\Phi_{u,v}^t$ on M.

The motion is stopped at *O*. Otherwise, we have the flow relation $\Phi_{u,v}^{t+t'} = \Phi_{u,v}^t \circ \Phi_{u,v}^{t'}$.

Let (x(t), y(t)) be a billiards trajectory in *U* starting at time 0 from (x_0, y_0) in the direction θ_0 . Set $u = \cos \theta_0$, $v = \sin \theta_0$.

As in the rectangular case, the direction $\theta(t)$ at time *t* and the position (x(t), y(t)) are determined by the position $\Phi_{u,v}^t(x_0, y_0)$ in *M*.

< 同 > < 回 > < 回 > <

Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)

・ロト・日本・日本・日本・日本・日本

M-rational and M-irrational directions

Let $(u, v) \neq (0, 0)$ be parameters in \mathbb{R}^2 .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

크

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

- 同下 - 三下 - 三下 - -

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

The corresponding direction (such that $\tan \theta = \frac{v}{u}$) is then said to be *M*-rational.

(1日) (コン・コン・コン)

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

The corresponding direction (such that $\tan \theta = \frac{v}{u}$) is then said to be *M*-rational.

Example: For instance, the horizontal and vertical directions are always *M*-rational.

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

The corresponding direction (such that $\tan \theta = \frac{v}{u}$) is then said to be *M*-rational.

Example: For instance, the horizontal and vertical directions are always *M*-rational.

If the flow $\Phi_{u,v}$ does not have a connection, the corresponding direction is said to be *M*-*irrational*.

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

The corresponding direction (such that $\tan \theta = \frac{v}{u}$) is then said to be *M*-rational.

Example: For instance, the horizontal and vertical directions are always *M*-rational.

If the flow $\Phi_{u,v}$ does not have a connection, the corresponding direction is said to be *M*-*irrational*.

Exercise: Show that there are only countably many rational directions. In particular, a randomly chosen direction is irrational.

Definition: The linear flow $\Phi_{u,v}$ on *M* has a *connection* if one of the three orbits starting at time 0 from *O* ends at *O* at some positive time (at which point it cannot be continued).

The corresponding direction (such that $\tan \theta = \frac{v}{u}$) is then said to be *M*-rational.

Example: For instance, the horizontal and vertical directions are always *M*-rational.

If the flow $\Phi_{u,v}$ does not have a connection, the corresponding direction is said to be *M*-*irrational*.

Exercise: Show that there are only countably many rational directions. In particular, a randomly chosen direction is irrational.

Exercise: Assume that the parameters a_0, a_1, b_0, b_1 of the table U are rational. Then a direction θ is *M*-rational iff $\tan \theta \in \mathbb{Q} \cap \infty$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

Then, the flow $\Phi_{u,v}$ is *minimal*: for every initial condition $p_0 \in M$, the orbit $(\Phi_{u,v}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

Then, the flow $\Phi_{u,v}$ is *minimal*: for every initial condition $p_0 \in M$, the orbit $(\Phi_{u,v}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

Corollary: If $\Phi_{u,v}$ has a periodic orbit, the corresponding direction is *M*-rational.

Then, the flow $\Phi_{u,v}$ is *minimal*: for every initial condition $p_0 \in M$, the orbit $(\Phi_{u,v}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

Corollary: If $\Phi_{u,v}$ has a periodic orbit, the corresponding direction is *M*-rational.

Exercise: Let $a_0 = b_0 = a_1 = 1$. Show that the diagonal direction $\theta = \frac{\pi}{4}$ is *M*-rational. Show that

(日本)(日本)(日本)(日本)

Then, the flow $\Phi_{u,v}$ is *minimal*: for every initial condition $p_0 \in M$, the orbit $(\Phi_{u,v}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

Corollary: If $\Phi_{u,v}$ has a periodic orbit, the corresponding direction is *M*-rational.

Exercise: Let $a_0 = b_0 = a_1 = 1$. Show that the diagonal direction $\theta = \frac{\pi}{4}$ is *M*-rational. Show that

1. If b_1 is rational, every orbit $(\Phi_{1,1}^t(p_0)_{t>0})$ either stops at *O* or is periodic.

Then, the flow $\Phi_{u,v}$ is *minimal*: for every initial condition $p_0 \in M$, the orbit $(\Phi_{u,v}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

Corollary: If $\Phi_{u,v}$ has a periodic orbit, the corresponding direction is *M*-rational.

Exercise: Let $a_0 = b_0 = a_1 = 1$. Show that the diagonal direction $\theta = \frac{\pi}{4}$ is *M*-rational. Show that

- 1. If b_1 is rational, every orbit $(\Phi_{1,1}^t(p_0)_{t>0})$ either stops at *O* or is periodic.
- 2. If b_1 is irrational, every orbit $(\Phi_{1,1}^t(p_0)_{t>0})$ either stops at *O* or is dense in *M*.

(日)

・ロト・日本・日本・日本・日本・日本

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

For T > 0, let $h_0(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_0 .

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

For T > 0, let $h_0(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_0 .

Define similarly $h_1(p, \theta, T)$, $v_0(p, \theta, T)$, $v_1(p, \theta, T)$.

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

For T > 0, let $h_0(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_0 . Define similarly $h_1(p, \theta, T)$, $v_0(p, \theta, T)$, $v_1(p, \theta, T)$.

Write

 $N(\rho, \theta, T) := (h_0(\rho, \theta, T), h_1(\rho, \theta, T), v_0(\rho, \theta, T), v_1(\rho, \theta, T)) \in \mathbb{Z}^4.$

(日本)(日本)(日本)(日本)

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

For T > 0, let $h_0(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_0 . Define similarly $h_1(p, \theta, T)$, $v_0(p, \theta, T)$, $v_1(p, \theta, T)$. Write

 $N(\rho, \theta, T) := (h_0(\rho, \theta, T), h_1(\rho, \theta, T), v_0(\rho, \theta, T), v_1(\rho, \theta, T)) \in \mathbb{Z}^4.$

Remark: Let $h(p, \theta, T)$ be the number of times the trajectory hits the large horizontal side of size $a_0 + a_1$. Check that one has, for all time T

 $|h_0(\rho, \theta, T) + h_1(\rho, \theta, T) - h(\rho, \theta, T)| \leq 1|.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

For T > 0, let $h_0(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_0 . Define similarly $h_1(p, \theta, T)$, $v_0(p, \theta, T)$, $v_1(p, \theta, T)$. Write

 $N(\rho, \theta, T) := (h_0(\rho, \theta, T), h_1(\rho, \theta, T), v_0(\rho, \theta, T), v_1(\rho, \theta, T)) \in \mathbb{Z}^4.$

Remark: Let $h(p, \theta, T)$ be the number of times the trajectory hits the large horizontal side of size $a_0 + a_1$. Check that one has, for all time T

 $|h_0(\rho, \theta, T) + h_1(\rho, \theta, T) - h(\rho, \theta, T)| \leq 1|.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

A similar inequality holds for the number of hits on the large vertical side.

The closed geodesic loops on M associated to the sides of the table U

크

• Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.

- 同下 - 三下 - 三下 - -

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u,v}$ will intersect either H_0 or H_1 before intersecting again H.

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.
- After intersecting the geodesic loop *H*, a trajectory of the flow $\Phi_{u,v}$ will intersect either H_0 or H_1 before intersecting again *H*. The return time to H is $2|v|^{-1}(b_0 + b_1)$ in the first case, $2|v|^{-1}b_0$ in the second case.

- 同下 - 三下 - 三下 - -

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.
- After intersecting the geodesic loop *H*, a trajectory of the flow $\Phi_{u,v}$ will intersect either H_0 or H_1 before intersecting again *H*. The return time to H is $2|v|^{-1}(b_0 + b_1)$ in the first case, $2|v|^{-1}b_0$ in the second case.
- One "expects" (uniform distribution of intersections with *H*) that the probability of hitting H_0 or H_1 is proportional to the length, respectively $\frac{a_0}{a_0+a_1}$ and $\frac{a_1}{a_0+a_1}$.

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.
- After intersecting the geodesic loop *H*, a trajectory of the flow $\Phi_{u,v}$ will intersect either H_0 or H_1 before intersecting again *H*. The return time to H is $2|v|^{-1}(b_0 + b_1)$ in the first case, $2|v|^{-1}b_0$ in the second case.
- One "expects" (uniform distribution of intersections with *H*) that the probability of hitting H_0 or H_1 is proportional to the length, respectively $\frac{a_0}{a_0+a_1}$ and $\frac{a_1}{a_0+a_1}$.
- ▶ Then the expected time to get *h* intersections with *H* is of the order of

$$T(h)pprox 2h[|v|^{-1}(b_0+b_1)rac{a_0}{a_0+a_1}+|v|^{-1}b_0rac{a_1}{a_0+a_1}]=2h|v|^{-1}rac{S}{a_0+a_1}.$$

- Set $u = \cos \theta$, $v = \sin \theta$. Let $S := a_0 b_0 + a_0 b_1 + a_1 b_0$ be the area of the table U.
- The hitting statistics h_i(p, θ, T), v_i(p, θ, T) (i = 0, 1) are the number of intersections of the segment (Φ^t_{u,v}(p))_{t∈[0,T]} on M with the geodesic loops H₀, H₁, V₀, V₁ on M.
- After intersecting the geodesic loop *H*, a trajectory of the flow $\Phi_{u,v}$ will intersect either H_0 or H_1 before intersecting again *H*. The return time to H is $2|v|^{-1}(b_0 + b_1)$ in the first case, $2|v|^{-1}b_0$ in the second case.
- ▶ One "expects" (uniform distribution of intersections with *H*) that the probability of hitting H_0 or H_1 is proportional to the length, respectively $\frac{a_0}{a_0+a_1}$ and $\frac{a_1}{a_0+a_1}$.
- ▶ Then the expected time to get *h* intersections with *H* is of the order of

$$T(h) pprox 2h[|v|^{-1}(b_0+b_1)rac{a_0}{a_0+a_1}+|v|^{-1}b_0rac{a_1}{a_0+a_1}]=2h|v|^{-1}rac{S}{a_0+a_1}.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

The expected sizes of h₀(p, θ, T) and h₁(p, θ, T) are thus | sin θ | ^{a₀}/_{2S} T and | sin θ | ^{a₁}/_{2S} T respectively.

Definition: A *M*-irrational direction θ has the *uniform distribution property* if any billiards trajectory with initial direction θ not running into the vertex *O* satisfies the expected statistics

 $\lim_{T\to\infty}\frac{1}{T}N(\rho,\theta,T)=\frac{1}{2S}(|\sin\theta|a_0,|\sin\theta|a_1,|\cos\theta|b_0,|\cos\theta|b_1).$

(本部) (本語) (本語) (語)

Definition: A *M*-irrational direction θ has the *uniform distribution property* if any billiards trajectory with initial direction θ not running into the vertex *O* satisfies the expected statistics

 $\lim_{T\to\infty}\frac{1}{T}N(\rho,\theta,T)=\frac{1}{2S}(|\sin\theta|a_0,|\sin\theta|a_1,|\cos\theta|b_0,|\cos\theta|b_1).$

A big difference with the genus 1 case is

Proposition: Assume that $\frac{a_0}{a_1}$ is neither rational nor a quadratic irrational.

(日) (圖) (E) (E) (E)

Definition: A *M*-irrational direction θ has the *uniform distribution property* if any billiards trajectory with initial direction θ not running into the vertex *O* satisfies the expected statistics

 $\lim_{T\to\infty}\frac{1}{T}N(\rho,\theta,T)=\frac{1}{2S}(|\sin\theta|a_0,|\sin\theta|a_1,|\cos\theta|b_0,|\cos\theta|b_1).$

A big difference with the genus 1 case is

Proposition: Assume that $\frac{a_0}{a_1}$ is neither rational nor a quadratic irrational. Then there exist *M*-irrational directions which do not have the uniform distribution property.

Definition: A *M*-irrational direction θ has the *uniform distribution property* if any billiards trajectory with initial direction θ not running into the vertex *O* satisfies the expected statistics

 $\lim_{T\to\infty}\frac{1}{T}N(p,\theta,T)=\frac{1}{2S}(|\sin\theta|a_0,|\sin\theta|a_1,|\cos\theta|b_0,|\cos\theta|b_1).$

A big difference with the genus 1 case is

Proposition: Assume that $\frac{a_0}{a_1}$ is neither rational nor a quadratic irrational. Then there exist *M*-irrational directions which do not have the uniform distribution property.

However, these directions are exceptional.

Definition: A *M*-irrational direction θ has the *uniform distribution property* if any billiards trajectory with initial direction θ not running into the vertex *O* satisfies the expected statistics

 $\lim_{T\to\infty}\frac{1}{T}N(\rho,\theta,T)=\frac{1}{2S}(|\sin\theta|a_0,|\sin\theta|a_1,|\cos\theta|b_0,|\cos\theta|b_1).$

A big difference with the genus 1 case is

Proposition: Assume that $\frac{a_0}{a_1}$ is neither rational nor a quadratic irrational. Then there exist *M*-irrational directions which do not have the uniform distribution property.

However, these directions are exceptional.

Theorem: (Masur, Veech) For any parameters a_0, a_1, b_0, b_1 , almost all directions have the uniform distribution property.

Rate of convergence

Let θ be a direction having the uniform distribution property.

Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)

▲御▶ ▲理▶ ▲理▶

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

 $R(p,\theta,T) := N(p,\theta,T) - \frac{T}{2S}(|\sin\theta|a_0, |\sin\theta|a_1, |\cos\theta|b_0, |\cos\theta|b_1) \in \mathbb{R}^4$ has size o(T).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

Let θ be a direction having the uniform distribution property. Then the difference

 $R(p,\theta,T) := N(p,\theta,T) - \frac{T}{2S}(|\sin\theta|a_0, |\sin\theta|a_1, |\cos\theta|b_0, |\cos\theta|b_1) \in \mathbb{R}^4$ has size o(T).

Can we improve on this estimate?

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

Let $\boldsymbol{\theta}$ be a direction having the uniform distribution property. Then the difference

 $R(p,\theta,T) := N(p,\theta,T) - \frac{T}{2S}(|\sin\theta|a_0, |\sin\theta|a_1, |\cos\theta|b_0, |\cos\theta|b_1) \in \mathbb{R}^4$

has size o(T).

Can we improve on this estimate?

In the genus 1 case considered this morning

(1日) (コン・コン・コン)

Let $\boldsymbol{\theta}$ be a direction having the uniform distribution property. Then the difference

 $R(p,\theta,T) := N(p,\theta,T) - \frac{T}{2S}(|\sin\theta|a_0, |\sin\theta|a_1, |\cos\theta|b_0, |\cos\theta|b_1) \in \mathbb{R}^4$

has size o(T).

Can we improve on this estimate?

In the genus 1 case considered this morning

when the irrational direction is very well approximated by rational directions (the Liouville case), one cannot improve significantly on o(T);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\boldsymbol{\theta}$ be a direction having the uniform distribution property. Then the difference

 $R(p,\theta,T) := N(p,\theta,T) - \frac{T}{2S}(|\sin\theta|a_0, |\sin\theta|a_1, |\cos\theta|b_0, |\cos\theta|b_1) \in \mathbb{R}^4$

has size o(T).

Can we improve on this estimate?

In the genus 1 case considered this morning

- when the irrational direction is very well approximated by rational directions (the Liouville case), one cannot improve significantly on o(T);
- on the other hand, for almost all directions (the diophantine case), one can obtain the much better estimate o(T^ε), for any ε > 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich. Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

・ 戸 ト ・ 三 ト ・ 三 ト

-

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich. Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

For almost all parameters a₀, a₁, b₀, b₁ and almost all directions θ, one has, for any p ∈ U

$$\limsup_{T\to\infty}\frac{\log||R(p,\theta,T)||}{\log T}=\frac{1}{3}.$$

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich. Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

For almost all parameters a₀, a₁, b₀, b₁ and almost all directions θ, one has, for any p ∈ U

$$\limsup_{T\to\infty}\frac{\log||R(p,\theta,T)||}{\log T}=\frac{1}{3}.$$

For any rational parameters a₀, a₁, b₀, b₁ and almost all directions θ, one has, for any p ∈ U

$$\limsup_{T \to \infty} \frac{\log ||R(p, \theta, T)||}{\log T} = \frac{1}{3}$$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

For a₀, a₁, b₀, b₁, θ as above, there exists a 2-dimensional plane P := P(a₀, a₁, b₀, b₁, θ) in ℝ⁴ containing the line ℝℓ (ℓ being the limit of ¹/_TN(p, θ, T) given above) such that the distance of N(p, θ, T) to P stays o(T^ε), for any ε > 0.

For a₀, a₁, b₀, b₁, θ as above, there exists a 2-dimensional plane P := P(a₀, a₁, b₀, b₁, θ) in ℝ⁴ containing the line ℝℓ (ℓ being the limit of ¹/_TN(p, θ, T) given above) such that the distance of N(p, θ, T) to P stays o(T^ϵ), for any ϵ > 0.

Unfortunately, there is no "elementary" proof of these results at this moment.

Thanks for your attention

Jean-Christophe Yoccoz Collège de France, Paris Translation surfaces and their geodesics (II)