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We will consider the billiards dynamics in a L-shaped table U
depending on parameters ag, a1, bg, by > 0.
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Constructing a translation surface from the billiards

table

Some of the considerations from a rectangular table are still valid: the
direction ¢ of a trajectory changes to sy(¢) := —0 after a rebound on an
horizontal side of U, to s,(#) := = — 6 after a rebound to a vertical side of U.
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Constructing a translation surface from the billiards

table

Some of the considerations from a rectangular table are still valid: the
direction ¢ of a trajectory changes to sy(¢) := —0 after a rebound on an
horizontal side of U, to s,(#) := = — 6 after a rebound to a vertical side of U.
We set sp(0) := 7+ 6. We have sp = s,0 S, = Sy o ;. If a trajectory starts at
time 0 in the direction 6(0) = 6y, its direction 6(t) at any time t can only take
one of the values +6y, ™ =% 6,.
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Constructing a translation surface from the billiards

table

Some of the considerations from a rectangular table are still valid: the
direction ¢ of a trajectory changes to sy(¢) := —0 after a rebound on an
horizontal side of U, to s,(#) := = — 6 after a rebound to a vertical side of U.
We set sp(0) := 7+ 6. We have sp = s,0 S, = Sy o ;. If a trajectory starts at
time 0 in the direction 6(0) = 6y, its direction 6(t) at any time t can only take
one of the values +6y, ™ =% 6,.

We define the linear symmetries Sy, S, of R? associated to sp, s, , and their
composition Sop = S0 Sy = Sy o Sp. The linear maps id, S, Sv, Sp form a
group G (the Klein group).
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Constructing a translation surface from the billiards

table

Some of the considerations from a rectangular table are still valid: the
direction ¢ of a trajectory changes to sy(¢) := —0 after a rebound on an
horizontal side of U, to s,(#) := = — 6 after a rebound to a vertical side of U.
We set sp(0) := 7+ 6. We have sp = s,0 S, = Sy o ;. If a trajectory starts at
time 0 in the direction 6(0) = 6y, its direction 6(t) at any time t can only take
one of the values +6y, ™ =% 6,.

We define the linear symmetries Sy, S, of R? associated to sp, s, , and their
composition Sop = S0 Sy = Sy o Sp. The linear maps id, S, Sv, Sp form a
group G (the Klein group).

We consider four symmetric copies U, Si(U), Sy (U), So(U) that we glue
together according to the following rule:
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Constructing a translation surface from the billiards

table

Some of the considerations from a rectangular table are still valid: the
direction ¢ of a trajectory changes to sy(¢) := —0 after a rebound on an
horizontal side of U, to s,(#) := = — 6 after a rebound to a vertical side of U.
We set sp(0) := 7+ 6. We have sp = s,0 S, = Sy o ;. If a trajectory starts at
time 0 in the direction 6(0) = 6y, its direction 6(t) at any time t can only take
one of the values +6y, ™ =% 6,.

We define the linear symmetries Sy, S, of R? associated to sp, s, , and their
composition Sop = S0 Sy = Sy o Sp. The linear maps id, S, Sv, Sp form a
group G (the Klein group).

We consider four symmetric copies U, Si(U), Sy (U), So(U) that we glue
together according to the following rule:

For any g € G, any horizontal side C of g(U) is glued through S;, to the
side S,(C) of S, 0 g(U), and any vertical side C of g(U) is glued through
S, to the side S,(C) of S, o g(U).
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Sv(U) =

So(V) Sh(U)

The four copies before glueing
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Sy(U) u

Bl

So(V) Sh(U)

Parallel sides with the same label must still be identified. Vertices with the
same name correspond to the same point on M.
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Attaching a handle to a sphere
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The local picture at the special point O
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The translation surface M

Denote by M the space obtained by glueing the four copies of
U.
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The translation surface M

Denote by M the space obtained by glueing the four copies of
U.

» The vertices of the copies of U correspond to points
A B,C,D,E,Oon M.
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The translation surface M

Denote by M the space obtained by glueing the four copies of
U.

» The vertices of the copies of U correspond to points
A B,C,D,E,Oon M.

» From the topological point of view, M is a sphere with two
handles attached . One says that M is a surface of genus
2. The torus T? := R?/Z? is a surface of genus 1.
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The translation surface M

Denote by M the space obtained by glueing the four copies of
U.

» The vertices of the copies of U correspond to points
A/B,C,D,E,Oon M.

» From the topological point of view, M is a sphere with two
handles attached . One says that M is a surface of genus
2. The torus T? := R?/Z? is a surface of genus 1.

» The total angle around A, B, C, D, E is 2, but the total
angle around O is 67r. Any point of M except O has a
natural local system of coordinates , well-defined up to
translation.
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Linear flows on M

Let u, v be real parameters. The differential equation

ax ay
a ~ %o T

(where (x, y) is any system of natural local coordinates on
M — {0}), defines a flow }, , on M.

v,

Jean-Christophe Yoccoz Collége de France, Paris Translation surfaces and their geodesics (ll)



Linear flows on M

Let u, v be real parameters. The differential equation
ax ady
da ~dt

(where (x, y) is any system of natural local coordinates on

M — {0}), defines a flow }, , on M.

The motion i§ stopped at O. Otherwise, we have the flow
relation ®) = ®f, , o ®f .

v,
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Linear flows on M

Let u, v be real parameters. The differential equation

ax ay
da ~dt
(where (x, y) is any system of natural local coordinates on
M — {0}), defines a flow }, , on M.
The motion is stopped at O. Otherwise, we have the flow
relation 4 = !, o df .
Let (x(t), y(t)) be a billiards trajectory in U starting at time 0
from (X, yo) in the direction 6.

v,
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Linear flows on M

Let u, v be real parameters. The differential equation

d_dy _
a7 adt
(where (x, y) is any system of natural local coordinates on
M — {0}), defines a flow }, , on M.
The motion i§ stopped at O. Otherwise, we have the flow
relation ®) = ®f, , o ®f .
Let (x(t), y(t)) be a billiards trajectory in U starting at time 0
from (X, yo) in the direction 6y. Set u = cos 6y, v = sinb.

v,
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Linear flows on M

Let u, v be real parameters. The differential equation

ax ay
d "t
(where (x, y) is any system of natural local coordinates on
M — {0}), defines a flow }, , on M.
The motion is stopped at O. Otherwise, we have the flow
relation 4 = !, o df .
Let (x(t), y(t)) be a billiards trajectory in U starting at time 0
from (X, yo) in the direction 6y. Set u = cos 6y, v = sinb.
As in the rectangular case, the direction 6(t) at time t and the
position (x(t), y(t)) are determined by the position ¢!, ,(xo, yo)
in M.

v,
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).

The corresponding direction (such that tan 6 = ;) is then said to be
M-rational.
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).

The corresponding direction (such that tan 6 = ;) is then said to be
M-rational.

Example: For instance, the horizontal and vertical directions are
always M-rational.
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).

The corresponding direction (such that tan 6 = ;) is then said to be
M-rational.

Example: For instance, the horizontal and vertical directions are
always M-rational.

If the flow ¢, , does not have a connection, the corresponding
direction is said to be M-irrational.
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).

The corresponding direction (such that tan 6 = ;) is then said to be
M-rational.

Example: For instance, the horizontal and vertical directions are
always M-rational.

If the flow ¢, , does not have a connection, the corresponding
direction is said to be M-irrational.

Exercise: Show that there are only countably many rational
directions. In particular, a randomly chosen direction is irrational.
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M-rational and M-irrational directions

Let (u, v) # (0, 0) be parameters in R2.

Definition: The linear flow ¢, , on M has a connection if one of the
three orbits starting at time 0 from O ends at O at some positive time
(at which point it cannot be continued).

The corresponding direction (such that tan 6 = ;) is then said to be
M-rational.

Example: For instance, the horizontal and vertical directions are
always M-rational.

If the flow ¢, , does not have a connection, the corresponding
direction is said to be M-irrational.

Exercise: Show that there are only countably many rational
directions. In particular, a randomly chosen direction is irrational.

Exercise: Assume that the parameters ay, a1, by, by of the table U
are rational. Then a direction 6 is M-rational iff tan8 € Q N co.
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Minimality for M-irrational directions

Theorem: (Keane)
Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.
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Minimality for M-irrational directions

Theorem: (Keane)
Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.

Then, the flow @, is minimal: for every initial condition pg € M,
the orbit (¢, ,(po)s>0 either stops at O or is dense in M.
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Minimality for M-irrational directions

Theorem: (Keane)

Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.

Then, the flow @, is minimal: for every initial condition pg € M,
the orbit (¢, ,(po)s>0 either stops at O or is dense in M.

Corollary: If ¢, , has a periodic orbit, the corresponding
direction is M-rational.
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Minimality for M-irrational directions

Theorem: (Keane)

Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.

Then, the flow @, is minimal: for every initial condition pg € M,
the orbit (¢, ,(po)s>0 either stops at O or is dense in M.

Corollary: If ¢, , has a periodic orbit, the corresponding
direction is M-rational.

Exercise: Let ay = by = a; = 1 . Show that the diagonal
direction 6 = 7 is M-rational. Show that
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Minimality for M-irrational directions

Theorem: (Keane)

Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.

Then, the flow @, is minimal: for every initial condition pg € M,
the orbit (¢, ,(po)s>0 either stops at O or is dense in M.

Corollary: If ¢, , has a periodic orbit, the corresponding
direction is M-rational.

Exercise: Let ay = by = a; = 1 . Show that the diagonal
direction 6 = 7 is M-rational. Show that

1. If by is rational, every orbit (d>§,1 (Po)t>0 either stops at O or
is periodic.
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Minimality for M-irrational directions

Theorem: (Keane)

Let (u, v) # (0, 0) be parameters in R? such that the associated
direction is M-irrational.

Then, the flow @, is minimal: for every initial condition pg € M,
the orbit (¢, ,(po)s>0 either stops at O or is dense in M.

Corollary: If ¢, , has a periodic orbit, the corresponding
direction is M-rational.

Exercise: Let ay = by = a; = 1 . Show that the diagonal
direction § = 7 is M-rational. Show that
1. If by is rational, every orbit (¢! ;(po)~o either stops at O or
is periodic. ’
2. If by is irrational, every orbit (] {(po)-o either stops at O
or is dense in M.
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).

For T > 0, let ho(p, 0, T) be the number of times the trajectory
hits the small horizontal side of size ag.
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).

For T > 0, let ho(p, 0, T) be the number of times the trajectory
hits the small horizontal side of size ag.
Define similarly hy(p,0, T), vo(p, 0, T), vi(p,0, T).
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).

For T > 0, let ho(p, 0, T) be the number of times the trajectory
hits the small horizontal side of size ag.

Define similarly hy(p,0, T), vo(p, 0, T), vi(p,0, T).

Write

N(pv 6’ T) = (hO(pvea T)a h1 (pvea T)a VO(pvev T)7 VA (p795 T)) € Z4‘
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).

For T > 0, let ho(p, 0, T) be the number of times the trajectory
hits the small horizontal side of size ag.

Define similarly hy(p,0, T), vo(p, 0, T), vi(p,0, T).

Write

N(pv 6’ T) = (hO(p)ea T)a h1 (p’ea T)a VO(pvev T)7 Vi (p795 T)) € Z4‘

Remark: Let h(p, 6, T) be the number of times the trajectory hits the large
horizontal side of size ag + a;. Check that one has, for all time T

|h0(p707 T) + (p797 T) - h(p707 T)‘ < 1‘
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Hitting statistics

Let 6 be a fixed direction. Consider a billiards trajectory starting
from some point p € U in the direction 6 (at unit speed).

For T > 0, let ho(p, 0, T) be the number of times the trajectory
hits the small horizontal side of size ag.

Define similarly hy(p,0, T), vo(p, 0, T), vi(p,0, T).

Write

N(pv 6’ T) = (hO(p)ea T)a h1 (p’ea T)a VO(IO797 T)7 Vi (p795 T)) € Z4‘

Remark: Let h(p, 6, T) be the number of times the trajectory hits the large
horizontal side of size ag + a;. Check that one has, for all time T

lho(p, 0, T) + hi(p, 6, T) — h(p, 6, T)| < 1.

A similar inequality holds for the number of hits on the large vertical side.
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|
v, v,
H, | Hy
‘ H
VO | ‘ VO
\
\Y
H1 \ H1
V1 V1
\
Ho

The closed geodesic loops on M associated to the sides of the
table U
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Heuristics on expected hitting statistics

> Setu=cosf, v=sind. Let S := apby + apb1 + a1 by be the area of the
table U.
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Heuristics on expected hitting statistics

> Setu=cosf, v=sind. Let S := apby + apb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.
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Heuristics on expected hitting statistics

» Setu=-cos6, v=sinf. Let S := apby + apsb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.

> After intersecting the geodesic loop H, a trajectory of the flow ¢, will
intersect either Hy or Hy before intersecting again H.
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Heuristics on expected hitting statistics

> Setu=cosf, v=sind. Let S := apby + apb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.

> After intersecting the geodesic loop H, a trajectory of the flow ¢, will
intersect either H, or H; before intersecting again H. The return time to
His 2|v|~"(bo + by) in the first case, 2|v|~" by in the second case.
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Heuristics on expected hitting statistics

> Setu=cosf, v=sind. Let S := apby + apb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.

> After intersecting the geodesic loop H, a trajectory of the flow ¢, will
intersect either H, or H; before intersecting again H. The return time to
His 2|v|~"(bo + by) in the first case, 2|v|~" by in the second case.

» One "expects” (uniform distribution of intersections with H) that the
probability of hitting Hp or H; is proportional to the length, respectively

o a1
s and prnl
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Heuristics on expected hitting statistics

> Setu=cosf, v=sind. Let S := apby + apb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.

> After intersecting the geodesic loop H, a trajectory of the flow ¢, will
intersect either H, or H; before intersecting again H. The return time to
His 2|v|~"(bo + by) in the first case, 2|v|~" by in the second case.

» One "expects” (uniform distribution of intersections with H) that the
probability of hitting Hp or H; is proportional to the length, respectively
% and &

ap+ay agtag ”
» Then the expected time to get h intersections with H is of the order of
. ao _1 aj -1 S
T(h) ~ 2h[|v|™" b v|7'b =2hv| T ———.
(h) = 2h[[v| ! (bo + br) -+ [VI T bo T ] = 2k T2
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Heuristics on expected hitting statistics

» Setu=-cos6, v=sinf. Let S := apby + apsb1 + a1 by be the area of the
table U.

> The hitting statistics hi(p, 6, T), vi(p,0, T) (i = 0, 1) are the number of
intersections of the segment (®}, ,(p))tcp,7; ON M with the geodesic
|OOpS Ho, H1, Vo, V1 on M.

> After intersecting the geodesic loop H, a trajectory of the flow ¢, will
intersect either H, or H; before intersecting again H. The return time to
His 2|v|~"(bo + by) in the first case, 2|v|~" by in the second case.

» One "expects” (uniform distribution of intersections with H) that the
probability of hitting Hp or H; is proportional to the length, respectively
and

a0+a1 ao+a1
» Then the expected time to get h intersections with H is of the order of
_ S
T(h)~2h b S
(h) = 2h{[v™" (b + br) 5+ VI A

v

The expected sizes of hy(p, 9, T) and hy(p, 6, T) are thus |sin 6| 2% T
and |sin 6|25 T respectively.
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction 6 has the uniform distribution
property if any billiards trajectory with initial direction 6 not running
into the vertex O satisfies the expected statistics

1 1, . .
lim —=N(p,9, T):g(|sm9|ao,\S|n0\a1,|cos€|bo,|cose|b1).

T—oo T
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction 6 has the uniform distribution
property if any billiards trajectory with initial direction 6 not running
into the vertex O satisfies the expected statistics

1 1, . .
lim —=N(p,9, T):g(|sm9|ao,\S|n0\a1,|cos€\bo,|cose|b1).

T—oo T

A big difference with the genus 1 case is

Proposition:  Assume that j—? is neither rational nor a
quadratic irrational.
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction 6 has the uniform distribution
property if any billiards trajectory with initial direction 6 not running
into the vertex O satisfies the expected statistics

1 1, . .
lim —=N(p,9, T):g(|sm9|ao,\S|n0\a1,|cos€\bo,|cose|b1).

T—oo T

A big difference with the genus 1 case is
Proposition:  Assume that j—? is neither rational nor a

quadratic irrational. Then there exist M-irrational directions
which do not have the uniform distribution property.
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction 6 has the uniform distribution
property if any billiards trajectory with initial direction 6 not running
into the vertex O satisfies the expected statistics

lim l N(p, 0, T):21—S(|sin9|ao,\sin@\a1,|cos€\bo,|cose|b1).

T—oo T

A big difference with the genus 1 case is

Proposition:  Assume that j—? is neither rational nor a
quadratic irrational. Then there exist M-irrational directions
which do not have the uniform distribution property.

However, these directions are exceptional.
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Uniform distribution property

According to the previous heuristics, one introduces the following

Definition: A M-irrational direction 6 has the uniform distribution
property if any billiards trajectory with initial direction 6 not running
into the vertex O satisfies the expected statistics

lim l N(p, 0, T):21—S(|sin9|ao,\sin@\a1,|cos€\bo,|cose|b1).

T—oo T

A big difference with the genus 1 case is

Proposition:  Assume that j—? is neither rational nor a
quadratic irrational. Then there exist M-irrational directions
which do not have the uniform distribution property.
However, these directions are exceptional.

Theorem: (Masur, Veech) For any parameters ay, a1, by, b1,
almost all directions have the uniform distribution property.
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Rate of convergence

Let 6 be a direction having the uniform distribution property.
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Rate of convergence

Let 6 be a direction having the uniform distribution property.
Then the difference

R(p,6,T):= N(p,6,T) — %(\sin 0ao, | sin6|as, | cos A|bo, | cos b]bs) € R

has size o(T).
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has size o(T).
Can we improve on this estimate?
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has size o(T).

Can we improve on this estimate?
In the genus 1 case considered this morning
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Rate of convergence

Let 6 be a direction having the uniform distribution property.
Then the difference

R(p,6,T):= N(p,6,T) — %(\sin 0ao, | sin6|as, | cos A|bo, | cos b]bs) € R

has size o(T).
Can we improve on this estimate?
In the genus 1 case considered this morning
» when the irrational direction is very well approximated by

rational directions (the Liouville case), one cannot improve
significantly on o(T);
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Rate of convergence

Let 6 be a direction having the uniform distribution property.
Then the difference

R(p,6,T):= N(p,6,T) — %(\sin 0ao, | sin6|as, | cos A|bo, | cos b]bs) € R

has size o(T).
Can we improve on this estimate?
In the genus 1 case considered this morning
» when the irrational direction is very well approximated by

rational directions (the Liouville case), one cannot improve
significantly on o(T);
» on the other hand, for almost all directions (the diophantine

case), one can obtain the much better estimate o(7¢), for
any € > 0.
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The Zorich phenomenon

The following facts were first discovered experimentally (in a much more
general setting) by A.Zorich, with suggestions of M.Kontsevich.
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The Zorich phenomenon

The following facts were first discovered experimentally (in a much more
general setting) by A.Zorich, with suggestions of M.Kontsevich.

Zorich also proposed an explanation. The complete proof depends on work
of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.
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The Zorich phenomenon

The following facts were first discovered experimentally (in a much more
general setting) by A.Zorich, with suggestions of M.Kontsevich.

Zorich also proposed an explanation. The complete proof depends on work
of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

» For almost all parameters ay, a1, by, by and almost all
directions 6, one has, forany p € U
log [|R(p, 6, T)|| 1

li = _.
e log T 3
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The Zorich phenomenon

The following facts were first discovered experimentally (in a much more
general setting) by A.Zorich, with suggestions of M.Kontsevich.

Zorich also proposed an explanation. The complete proof depends on work
of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

» For almost all parameters ay, a1, by, by and almost all
directions 6, one has, forany p € U
log [|R(p, 6, T)|| 1

li = _.
e log T 3

» For any rational parameters ag, a1, by, by and almost all
directions 6, one has, for any p € U
log|[R(p, 0, T)I| 1

li = —.
TSP g T 3
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» For ag, a1, by, by, 0 as above, there exists a 2-dimensional
plane P := P(ay, a1, by, b, 6) in R* containing the line R¢
(¢ being the limit of lTN(p, 6, T) given above) such that the
distance of N(p, 6, T) to P stays o(T¢), for any € > 0.
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» For ag, a1, by, by, 0 as above, there exists a 2-dimensional
plane P := P(ay, a1, by, b, 6) in R* containing the line R¢
(¢ being the limit of lTN(p, 6, T) given above) such that the
distance of N(p, 6, T) to P stays o(T¢), for any € > 0.

Unfortunately, there is no "elementary” proof of these results at
this moment.
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Thanks for your attention
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