Translation surfaces and their geodesics (II)

Jean-Christophe Yoccoz
Collège de France, Paris

ISSMYS, ENSL, Lyon, August 28, 2012

The setting

We will consider the billiards dynamics in a L-shaped table U depending on parameters $a_{0}, a_{1}, b_{0}, b_{1}>0$.

Constructing a translation surface from the billiards table

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_{h}(\theta):=-\theta$ after a rebound on an horizontal side of U, to $s_{v}(\theta):=\pi-\theta$ after a rebound to a vertical side of U.

Constructing a translation surface from the billiards table

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_{h}(\theta):=-\theta$ after a rebound on an horizontal side of U, to $s_{v}(\theta):=\pi-\theta$ after a rebound to a vertical side of U. We set $s_{O}(\theta):=\pi+\theta$. We have $s_{O}=s_{h} \circ s_{V}=s_{V} \circ s_{h}$. If a trajectory starts at time 0 in the direction $\theta(0)=\theta_{0}$, its direction $\theta(t)$ at any time t can only take one of the values $\pm \theta_{0}, \pi \pm \theta_{0}$.

Constructing a translation surface from the billiards table

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_{h}(\theta):=-\theta$ after a rebound on an horizontal side of U, to $s_{v}(\theta):=\pi-\theta$ after a rebound to a vertical side of U.
We set $s_{O}(\theta):=\pi+\theta$. We have $s_{O}=s_{h} \circ s_{V}=s_{V} \circ s_{h}$. If a trajectory starts at time 0 in the direction $\theta(0)=\theta_{0}$, its direction $\theta(t)$ at any time t can only take one of the values $\pm \theta_{0}, \pi \pm \theta_{0}$.
We define the linear symmetries S_{h}, S_{v} of \mathbb{R}^{2} associated to s_{h}, s_{v}, and their composition $S_{O}=S_{h} \circ S_{v}=S_{v} \circ S_{h}$. The linear maps id, S_{h}, S_{v}, S_{O} form a group G (the Klein group).

Constructing a translation surface from the billiards table

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_{h}(\theta):=-\theta$ after a rebound on an horizontal side of U, to $s_{v}(\theta):=\pi-\theta$ after a rebound to a vertical side of U.
We set $s_{O}(\theta):=\pi+\theta$. We have $s_{O}=s_{h} \circ s_{v}=s_{v} \circ s_{h}$. If a trajectory starts at time 0 in the direction $\theta(0)=\theta_{0}$, its direction $\theta(t)$ at any time t can only take one of the values $\pm \theta_{0}, \pi \pm \theta_{0}$.
We define the linear symmetries S_{h}, S_{v} of \mathbb{R}^{2} associated to s_{h}, s_{v}, and their composition $S_{O}=S_{h} \circ S_{v}=S_{v} \circ S_{h}$. The linear maps id, S_{h}, S_{v}, S_{O} form a group G (the Klein group).
We consider four symmetric copies $U, S_{h}(U), S_{v}(U), S_{O}(U)$ that we glue together according to the following rule:

Constructing a translation surface from the billiards table

Some of the considerations from a rectangular table are still valid: the direction θ of a trajectory changes to $s_{h}(\theta):=-\theta$ after a rebound on an horizontal side of U, to $s_{v}(\theta):=\pi-\theta$ after a rebound to a vertical side of U.
We set $s_{O}(\theta):=\pi+\theta$. We have $s_{O}=s_{h} \circ s_{v}=s_{v} \circ s_{h}$. If a trajectory starts at time 0 in the direction $\theta(0)=\theta_{0}$, its direction $\theta(t)$ at any time t can only take one of the values $\pm \theta_{0}, \pi \pm \theta_{0}$.

We define the linear symmetries S_{h}, S_{v} of \mathbb{R}^{2} associated to s_{h}, s_{v}, and their composition $S_{O}=S_{h} \circ S_{v}=S_{v} \circ S_{h}$. The linear maps id, S_{h}, S_{v}, S_{O} form a group G (the Klein group).
We consider four symmetric copies $U, S_{h}(U), S_{v}(U), S_{O}(U)$ that we glue together according to the following rule:

For any $g \in G$, any horizontal side C of $g(U)$ is glued through S_{h} to the side $S_{h}(C)$ of $S_{h} \circ g(U)$, and any vertical side C of $g(U)$ is glued through S_{v} to the side $S_{v}(C)$ of $S_{v} \circ g(U)$.

The four copies before glueing

Parallel sides with the same label must still be identified. Vertices with the same name correspond to the same point on M.

Attaching a handle to a sphere

The local picture at the special point O

The translation surface M

Denote by M the space obtained by glueing the four copies of U.

The translation surface M

Denote by M the space obtained by glueing the four copies of U.

- The vertices of the copies of U correspond to points A, B, C, D, E, O on M.

The translation surface M

Denote by M the space obtained by glueing the four copies of U.

- The vertices of the copies of U correspond to points A, B, C, D, E, O on M.
- From the topological point of view, M is a sphere with two handles attached. One says that M is a surface of genus 2. The torus $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ is a surface of genus 1 .

The translation surface M

Denote by M the space obtained by glueing the four copies of U.

- The vertices of the copies of U correspond to points A, B, C, D, E, O on M.
- From the topological point of view, M is a sphere with two handles attached. One says that M is a surface of genus 2. The torus $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ is a surface of genus 1 .
- The total angle around A, B, C, D, E is 2π, but the total angle around O is 6π. Any point of M except O has a natural local system of coordinates, well-defined up to translation.

Linear flows on M

Let u, v be real parameters. The differential equation

$$
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v
$$

(where (x, y) is any system of natural local coordinates on $M-\{O\}$), defines a flow $\Phi_{u, v}^{t}$ on M.

Linear flows on M

Let u, v be real parameters. The differential equation

$$
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v
$$

(where (x, y) is any system of natural local coordinates on $M-\{O\}$), defines a flow $\Phi_{u, v}^{t}$ on M.
The motion is stopped at O. Otherwise, we have the flow relation $\Phi_{u, v}^{t+t^{\prime}}=\Phi_{u, v}^{t} \circ \Phi_{u, v}^{t^{\prime}}$.

Linear flows on M

Let u, v be real parameters. The differential equation

$$
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v
$$

(where (x, y) is any system of natural local coordinates on $M-\{O\}$), defines a flow $\Phi_{u, v}^{t}$ on M.
The motion is stopped at O. Otherwise, we have the flow relation $\Phi_{u, v}^{t+t^{\prime}}=\Phi_{u, v}^{t} \circ \Phi_{u, v}^{t^{\prime}}$.
Let $(x(t), y(t))$ be a billiards trajectory in U starting at time 0 from $\left(x_{0}, y_{0}\right)$ in the direction θ_{0}.

Linear flows on M

Let u, v be real parameters. The differential equation

$$
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v
$$

(where (x, y) is any system of natural local coordinates on $M-\{O\}$), defines a flow $\Phi_{u, v}^{t}$ on M.
The motion is stopped at O. Otherwise, we have the flow relation $\Phi_{u, v}^{t+t^{\prime}}=\Phi_{u, v}^{t} \circ \Phi_{u, v}^{t^{\prime}}$.
Let $(x(t), y(t))$ be a billiards trajectory in U starting at time 0 from $\left(x_{0}, y_{0}\right)$ in the direction θ_{0}. Set $u=\cos \theta_{0}, v=\sin \theta_{0}$.

Linear flows on M

Let u, v be real parameters. The differential equation

$$
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v
$$

(where (x, y) is any system of natural local coordinates on $M-\{O\}$), defines a flow $\Phi_{u, v}^{t}$ on M.
The motion is stopped at O. Otherwise, we have the flow relation $\Phi_{u, v}^{t+t^{\prime}}=\Phi_{u, v}^{t} \circ \Phi_{u, v}^{t^{\prime}}$.
Let $(x(t), y(t))$ be a billiards trajectory in U starting at time 0 from $\left(x_{0}, y_{0}\right)$ in the direction θ_{0}. Set $u=\cos \theta_{0}, v=\sin \theta_{0}$. As in the rectangular case, the direction $\theta(t)$ at time t and the position $(x(t), y(t))$ are determined by the position $\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)$ in M.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).
The corresponding direction (such that $\tan \theta=\frac{v}{u}$) is then said to be M-rational.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).
The corresponding direction (such that $\tan \theta=\frac{v}{u}$) is then said to be M-rational.
Example: For instance, the horizontal and vertical directions are always M-rational.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).
The corresponding direction (such that $\tan \theta=\frac{v}{u}$) is then said to be M-rational.
Example: For instance, the horizontal and vertical directions are always M-rational.
If the flow $\Phi_{u, v}$ does not have a connection, the corresponding direction is said to be M-irrational.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).
The corresponding direction (such that $\tan \theta=\frac{v}{u}$) is then said to be M-rational.
Example: For instance, the horizontal and vertical directions are always M-rational.
If the flow $\Phi_{u, v}$ does not have a connection, the corresponding direction is said to be M-irrational.

Exercise: Show that there are only countably many rational directions. In particular, a randomly chosen direction is irrational.

M-rational and M-irrational directions

Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2}.
Definition: The linear flow $\Phi_{u, v}$ on M has a connection if one of the three orbits starting at time 0 from O ends at O at some positive time (at which point it cannot be continued).
The corresponding direction (such that $\tan \theta=\frac{v}{u}$) is then said to be M-rational.
Example: For instance, the horizontal and vertical directions are always M-rational.
If the flow $\Phi_{u, v}$ does not have a connection, the corresponding direction is said to be M-irrational.

Exercise: Show that there are only countably many rational directions. In particular, a randomly chosen direction is irrational.
Exercise: Assume that the parameters $a_{0}, a_{1}, b_{0}, b_{1}$ of the table U are rational. Then a direction θ is M-rational iff $\tan \theta \in \mathbb{Q} \cap \infty$.

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.
Then, the flow $\Phi_{u, v}$ is minimal: for every initial condition $p_{0} \in M$, the orbit $\left(\Phi_{u, v}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.
Then, the flow $\Phi_{u, v}$ is minimal: for every initial condition $p_{0} \in M$, the orbit $\left(\Phi_{u, v}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.
Corollary: If $\Phi_{u, v}$ has a periodic orbit, the corresponding direction is M-rational.

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.
Then, the flow $\Phi_{u, v}$ is minimal: for every initial condition $p_{0} \in M$, the orbit $\left(\Phi_{u, v}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.
Corollary: If $\Phi_{u, v}$ has a periodic orbit, the corresponding direction is M-rational.
Exercise: Let $a_{0}=b_{0}=a_{1}=1$. Show that the diagonal direction $\theta=\frac{\pi}{4}$ is M-rational. Show that

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.
Then, the flow $\Phi_{u, v}$ is minimal: for every initial condition $p_{0} \in M$, the orbit $\left(\Phi_{u, v}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.
Corollary: If $\Phi_{u, v}$ has a periodic orbit, the corresponding direction is M-rational.

Exercise: Let $a_{0}=b_{0}=a_{1}=1$. Show that the diagonal direction $\theta=\frac{\pi}{4}$ is M-rational. Show that

1. If b_{1} is rational, every orbit $\left(\Phi_{1,1}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is periodic.

Minimality for M-irrational directions

Theorem: (Keane)
Let $(u, v) \neq(0,0)$ be parameters in \mathbb{R}^{2} such that the associated direction is M-irrational.
Then, the flow $\Phi_{u, v}$ is minimal: for every initial condition $p_{0} \in M$, the orbit $\left(\Phi_{u, v}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.
Corollary: If $\Phi_{u, v}$ has a periodic orbit, the corresponding direction is M-rational.
Exercise: Let $a_{0}=b_{0}=a_{1}=1$. Show that the diagonal direction $\theta=\frac{\pi}{4}$ is M-rational. Show that

1. If b_{1} is rational, every orbit $\left(\Phi_{1,1}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is periodic.
2. If b_{1} is irrational, every orbit $\left(\Phi_{1,1}^{t}\left(p_{0}\right)_{t>0}\right.$ either stops at O or is dense in M.

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).
For $T>0$, let $h_{0}(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_{0}.

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).
For $T>0$, let $h_{0}(p, \theta, T)$ be the number of times the trajectory
hits the small horizontal side of size a_{0}.
Define similarly $h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)$.

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).
For $T>0$, let $h_{0}(p, \theta, T)$ be the number of times the trajectory
hits the small horizontal side of size a_{0}.
Define similarly $h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)$.
Write

$$
N(p, \theta, T):=\left(h_{0}(p, \theta, T), h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)\right) \in \mathbb{Z}^{4}
$$

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).
For $T>0$, let $h_{0}(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_{0}.
Define similarly $h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)$.
Write

$$
N(p, \theta, T):=\left(h_{0}(p, \theta, T), h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)\right) \in \mathbb{Z}^{4}
$$

Remark: Let $h(p, \theta, T)$ be the number of times the trajectory hits the large horizontal side of size $a_{0}+a_{1}$. Check that one has, for all time T

$$
\left|h_{0}(p, \theta, T)+h_{1}(p, \theta, T)-h(p, \theta, T)\right| \leqslant 1 \mid
$$

Hitting statistics

Let θ be a fixed direction. Consider a billiards trajectory starting from some point $p \in U$ in the direction θ (at unit speed).
For $T>0$, let $h_{0}(p, \theta, T)$ be the number of times the trajectory hits the small horizontal side of size a_{0}.
Define similarly $h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)$.
Write

$$
N(p, \theta, T):=\left(h_{0}(p, \theta, T), h_{1}(p, \theta, T), v_{0}(p, \theta, T), v_{1}(p, \theta, T)\right) \in \mathbb{Z}^{4}
$$

Remark: Let $h(p, \theta, T)$ be the number of times the trajectory hits the large horizontal side of size $a_{0}+a_{1}$. Check that one has, for all time T

$$
\left|h_{0}(p, \theta, T)+h_{1}(p, \theta, T)-h(p, \theta, T)\right| \leqslant 1 \mid
$$

A similar inequality holds for the number of hits on the large vertical side.

The closed geodesic loops on M associated to the sides of the table U

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{U, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{u, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u, v}$ will intersect either H_{0} or H_{1} before intersecting again H.

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{u, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u, v}$ will intersect either H_{0} or H_{1} before intersecting again H. The return time to H is $2|v|^{-1}\left(b_{0}+b_{1}\right)$ in the first case, $2|v|^{-1} b_{0}$ in the second case.

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{u, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u, v}$ will intersect either H_{0} or H_{1} before intersecting again H. The return time to H is $2|v|^{-1}\left(b_{0}+b_{1}\right)$ in the first case, $2|v|^{-1} b_{0}$ in the second case.
- One "expects" (uniform distribution of intersections with H) that the probability of hitting H_{0} or H_{1} is proportional to the length, respectively $\frac{a_{0}}{a_{0}+a_{1}}$ and $\frac{a_{1}}{a_{0}+a_{1}}$.

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{u, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u, v}$ will intersect either H_{0} or H_{1} before intersecting again H. The return time to H is $2|v|^{-1}\left(b_{0}+b_{1}\right)$ in the first case, $2|v|^{-1} b_{0}$ in the second case.
- One "expects" (uniform distribution of intersections with H) that the probability of hitting H_{0} or H_{1} is proportional to the length, respectively $\frac{a_{0}}{a_{0}+a_{1}}$ and $\frac{a_{1}}{a_{0}+a_{1}}$.
- Then the expected time to get h intersections with H is of the order of

$$
T(h) \approx 2 h\left[|v|^{-1}\left(b_{0}+b_{1}\right) \frac{a_{0}}{a_{0}+a_{1}}+|v|^{-1} b_{0} \frac{a_{1}}{a_{0}+a_{1}}\right]=2 h|v|^{-1} \frac{S}{a_{0}+a_{1}}
$$

Heuristics on expected hitting statistics

- Set $u=\cos \theta, v=\sin \theta$. Let $S:=a_{0} b_{0}+a_{0} b_{1}+a_{1} b_{0}$ be the area of the table U.
- The hitting statistics $h_{i}(p, \theta, T), v_{i}(p, \theta, T)(i=0,1)$ are the number of intersections of the segment $\left(\Phi_{u, v}^{t}(p)\right)_{t \in[0, T]}$ on M with the geodesic loops $H_{0}, H_{1}, V_{0}, V_{1}$ on M.
- After intersecting the geodesic loop H, a trajectory of the flow $\Phi_{u, v}$ will intersect either H_{0} or H_{1} before intersecting again H. The return time to H is $2|v|^{-1}\left(b_{0}+b_{1}\right)$ in the first case, $2|v|^{-1} b_{0}$ in the second case.
- One "expects" (uniform distribution of intersections with H) that the probability of hitting H_{0} or H_{1} is proportional to the length, respectively $\frac{a_{0}}{a_{0}+a_{1}}$ and $\frac{a_{1}}{a_{0}+a_{1}}$.
- Then the expected time to get h intersections with H is of the order of

$$
T(h) \approx 2 h\left[|v|^{-1}\left(b_{0}+b_{1}\right) \frac{a_{0}}{a_{0}+a_{1}}+|v|^{-1} b_{0} \frac{a_{1}}{a_{0}+a_{1}}\right]=2 h|v|^{-1} \frac{S}{a_{0}+a_{1}}
$$

- The expected sizes of $h_{0}(p, \theta, T)$ and $h_{1}(p, \theta, T)$ are thus $|\sin \theta| \frac{a_{0}}{2 S} T$ and $|\sin \theta| \frac{a_{1}}{2 S} T$ respectively.

Uniform distribution property

According to the previous heuristics, one introduces the following
Definition: A M-irrational direction θ has the uniform distribution property if any billiards trajectory with initial direction θ not running into the vertex O satisfies the expected statistics

$$
\lim _{T \rightarrow \infty} \frac{1}{T} N(p, \theta, T)=\frac{1}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right)
$$

Uniform distribution property

According to the previous heuristics, one introduces the following
Definition: A M-irrational direction θ has the uniform distribution property if any billiards trajectory with initial direction θ not running into the vertex O satisfies the expected statistics

$$
\lim _{T \rightarrow \infty} \frac{1}{T} N(p, \theta, T)=\frac{1}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right)
$$

A big difference with the genus 1 case is
Proposition: Assume that $\frac{a_{0}}{a_{1}}$ is neither rational nor a quadratic irrational.

Uniform distribution property

According to the previous heuristics, one introduces the following
Definition: A M-irrational direction θ has the uniform distribution property if any billiards trajectory with initial direction θ not running into the vertex O satisfies the expected statistics

$$
\lim _{T \rightarrow \infty} \frac{1}{T} N(p, \theta, T)=\frac{1}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right)
$$

A big difference with the genus 1 case is
Proposition: Assume that $\frac{a_{0}}{a_{1}}$ is neither rational nor a quadratic irrational. Then there exist M-irrational directions which do not have the uniform distribution property.

Uniform distribution property

According to the previous heuristics, one introduces the following
Definition: A M-irrational direction θ has the uniform distribution property if any billiards trajectory with initial direction θ not running into the vertex O satisfies the expected statistics

$$
\lim _{T \rightarrow \infty} \frac{1}{T} N(p, \theta, T)=\frac{1}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right)
$$

A big difference with the genus 1 case is
Proposition: Assume that $\frac{a_{0}}{a_{1}}$ is neither rational nor a quadratic irrational. Then there exist M-irrational directions which do not have the uniform distribution property.
However, these directions are exceptional.

Uniform distribution property

According to the previous heuristics, one introduces the following
Definition: A M-irrational direction θ has the uniform distribution property if any billiards trajectory with initial direction θ not running into the vertex O satisfies the expected statistics

$$
\lim _{T \rightarrow \infty} \frac{1}{T} N(p, \theta, T)=\frac{1}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right)
$$

A big difference with the genus 1 case is
Proposition: Assume that $\frac{a_{0}}{a_{1}}$ is neither rational nor a quadratic irrational. Then there exist M-irrational directions which do not have the uniform distribution property.
However, these directions are exceptional.
Theorem: (Masur, Veech) For any parameters $a_{0}, a_{1}, b_{0}, b_{1}$, almost all directions have the uniform distribution property.

Rate of convergence

Let θ be a direction having the uniform distribution property.

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

$$
R(p, \theta, T):=N(p, \theta, T)-\frac{T}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right) \in \mathbb{R}^{4}
$$

has size $O(T)$.

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

$$
R(p, \theta, T):=N(p, \theta, T)-\frac{T}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right) \in \mathbb{R}^{4}
$$

has size $O(T)$.
Can we improve on this estimate?

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

$$
R(p, \theta, T):=N(p, \theta, T)-\frac{T}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right) \in \mathbb{R}^{4}
$$

has size $o(T)$.
Can we improve on this estimate?
In the genus 1 case considered this morning

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

$$
R(p, \theta, T):=N(p, \theta, T)-\frac{T}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right) \in \mathbb{R}^{4}
$$

has size $o(T)$.
Can we improve on this estimate?
In the genus 1 case considered this morning

- when the irrational direction is very well approximated by rational directions (the Liouville case), one cannot improve significantly on $O(T)$;

Rate of convergence

Let θ be a direction having the uniform distribution property. Then the difference

$$
R(p, \theta, T):=N(p, \theta, T)-\frac{T}{2 S}\left(|\sin \theta| a_{0},|\sin \theta| a_{1},|\cos \theta| b_{0},|\cos \theta| b_{1}\right) \in \mathbb{R}^{4}
$$

has size $O(T)$.
Can we improve on this estimate?
In the genus 1 case considered this morning

- when the irrational direction is very well approximated by rational directions (the Liouville case), one cannot improve significantly on $O(T)$;
- on the other hand, for almost all directions (the diophantine case), one can obtain the much better estimate $o\left(T^{\epsilon}\right)$, for any $\epsilon>0$.

The Zorich phenomenon

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich.

The Zorich phenomenon

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich.
Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

The Zorich phenomenon

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich.
Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

- For almost all parameters $a_{0}, a_{1}, b_{0}, b_{1}$ and almost all directions θ, one has, for any $p \in U$

$$
\limsup _{T \rightarrow \infty} \frac{\log \|R(p, \theta, T)\|}{\log T}=\frac{1}{3}
$$

The Zorich phenomenon

The following facts were first discovered experimentally (in a much more general setting) by A.Zorich, with suggestions of M.Kontsevich.
Zorich also proposed an explanation. The complete proof depends on work of Zorich, Kontsevich, Forni, Bainbridge, Eskin-Kontsevich-Zorich.

- For almost all parameters $a_{0}, a_{1}, b_{0}, b_{1}$ and almost all directions θ, one has, for any $p \in U$

$$
\limsup _{T \rightarrow \infty} \frac{\log \|R(p, \theta, T)\|}{\log T}=\frac{1}{3}
$$

- For any rational parameters $a_{0}, a_{1}, b_{0}, b_{1}$ and almost all directions θ, one has, for any $p \in U$

$$
\limsup _{T \rightarrow \infty} \frac{\log \|R(p, \theta, T)\|}{\log T}=\frac{1}{3}
$$

- For $a_{0}, a_{1}, b_{0}, b_{1}, \theta$ as above, there exists a 2 -dimensional plane $P:=P\left(a_{0}, a_{1}, b_{0}, b_{1}, \theta\right)$ in \mathbb{R}^{4} containing the line $\mathbb{R} \ell$ (ℓ being the limit of $\frac{1}{T} N(p, \theta, T)$ given above) such that the distance of $N(p, \theta, T)$ to P stays $o\left(T^{\epsilon}\right)$, for any $\epsilon>0$.
- For $a_{0}, a_{1}, b_{0}, b_{1}, \theta$ as above, there exists a 2 -dimensional plane $P:=P\left(a_{0}, a_{1}, b_{0}, b_{1}, \theta\right)$ in \mathbb{R}^{4} containing the line $\mathbb{R} \ell$ (ℓ being the limit of $\frac{1}{T} N(p, \theta, T)$ given above) such that the distance of $N(p, \theta, T)$ to P stays $o\left(T^{\epsilon}\right)$, for any $\epsilon>0$.

Unfortunately, there is no "elementary" proof of these results at this moment.

Thanks for your attention

