Translation surfaces and their geodesics (I)

Jean-Christophe Yoccoz
Collège de France, PSL, Paris

ISSMYS, ENSL, Lyon, August 28, 2012

Billiards in planar domains

The billiards table is a bounded open connected subset $U \subset \mathbb{R}^{2}$ with piecewise smooth boundary ∂U.

Billiards in planar domains

The billiards table is a bounded open connected subset $U \subset \mathbb{R}^{2}$ with piecewise smooth boundary ∂U.

A particle runs straightforward at unit speed in U, bouncing elastically on (the smooth part of) the boundary. The motion stops if the particle hits a non regular point of the boundary.

Some interesting tables

Time averages of observables (Birkhoff averages)

Denote by $q(t)=(x(t), y(t)) \in \bar{U}$ be the position of the particle at time t, by $\theta(t) \in \mathbb{R} / 2 \pi \mathbb{Z}$ its direction at a non-bouncing time t (the angle being counted from the horizontal).

Time averages of observables (Birkhoff averages)

Denote by $q(t)=(x(t), y(t)) \in \bar{U}$ be the position of the particle at time t, by $\theta(t) \in \mathbb{R} / 2 \pi \mathbb{Z}$ its direction at a non-bouncing time t (the angle being counted from the horizontal).
Given a "nice" function $\varphi(q, \theta)$ on $\bar{U} \times \mathbb{R} / 2 \pi \mathbb{Z}$, we would like to understand the behaviour of the Birkhoff averages

$$
\frac{1}{T} \int_{0}^{T} \varphi(q(t), \theta(t)) d t
$$

as T becomes large, for every initial condition ($q(0), \theta(0))$.

Rational polygonal tables

We say that a billiards table U is polygonal if the boundary ∂U is the union of finitely many line segments.

Rational polygonal tables

We say that a billiards table U is polygonal if the boundary ∂U is the union of finitely many line segments.
A polygonal billiards table is rational is any angle between the segments in the boundary is a rational multiple of 2π.

Some rational tables

Billiards in a rectangular table

From now on, the table will be the rectangle $U:=(0, a) \times(0, b)$.

Billiards in a rectangular table

From now on, the table will be the rectangle $U:=(0, a) \times(0, b)$. Denote by $\theta_{\text {in }}, \theta_{\text {out }}$ the directions of a trajectory just before and just after a rebound on the boundary.

Billiards in a rectangular table

From now on, the table will be the rectangle $U:=(0, a) \times(0, b)$. Denote by $\theta_{\text {in }}, \theta_{\text {out }}$ the directions of a trajectory just before and just after a rebound on the boundary.
If the rebound occurs on the horizontal sides of U, one has $\theta_{\text {out }}=-\theta_{\text {in }}=: s_{h}\left(\theta_{\text {in }}\right)$.

Billiards in a rectangular table

From now on, the table will be the rectangle $U:=(0, a) \times(0, b)$.
Denote by $\theta_{\text {in }}, \theta_{\text {out }}$ the directions of a trajectory just before and just after a rebound on the boundary.
If the rebound occurs on the horizontal sides of U, one has $\theta_{\text {out }}=-\theta_{\text {in }}=: s_{h}\left(\theta_{\text {in }}\right)$.

If the rebound occurs on the vertical sides of U, one has $\theta_{\text {out }}=\pi-\theta_{\text {in }}=: s_{V}\left(\theta_{\text {in }}\right)$.

From the rectangular table to the torus

Observe that s_{h}, s_{V} are commuting involutions of $\mathbb{R} / 2 \pi \mathbb{Z}$, generating a group G isomorphic to the Klein group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.

From the rectangular table to the torus

Observe that s_{h}, s_{V} are commuting involutions of $\mathbb{R} / 2 \pi \mathbb{Z}$, generating a group G isomorphic to the Klein group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. The orbit of an element θ under G is $\{ \pm \theta, \pi \pm \theta\}$.

From the rectangular table to the torus

Observe that s_{h}, s_{V} are commuting involutions of $\mathbb{R} / 2 \pi \mathbb{Z}$, generating a group G isomorphic to the Klein group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. The orbit of an element θ under G is $\{ \pm \theta, \pi \pm \theta\}$.
Thus, the direction along a given trajectory can take at most 4 distinct values.

From the rectangular table to the torus

Observe that s_{h}, s_{V} are commuting involutions of $\mathbb{R} / 2 \pi \mathbb{Z}$, generating a group G isomorphic to the Klein group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. The orbit of an element θ under G is $\{ \pm \theta, \pi \pm \theta\}$.
Thus, the direction along a given trajectory can take at most 4 distinct values.
Denote by $S_{h}(x, y)=(x,-y)$ and $S_{v}(x, y)=(-x, y)$ the linear symmetries of \mathbb{R}^{2} associated to s_{h}, s_{v}, and by $S_{O}(x, y)=(-x,-y)$ the central symmetry equal to $S_{h} \circ S_{V}=S_{v} \circ S_{h}$.

From the rectangular table to the torus

Observe that s_{h}, s_{V} are commuting involutions of $\mathbb{R} / 2 \pi \mathbb{Z}$, generating a group G isomorphic to the Klein group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. The orbit of an element θ under G is $\{ \pm \theta, \pi \pm \theta\}$.
Thus, the direction along a given trajectory can take at most 4 distinct values.
Denote by $S_{h}(x, y)=(x,-y)$ and $S_{v}(x, y)=(-x, y)$ the linear symmetries of \mathbb{R}^{2} associated to s_{h}, s_{v}, and by
$S_{O}(x, y)=(-x,-y)$ the central symmetry equal to
$S_{h} \circ S_{v}=S_{v} \circ S_{h}$.
From the table U and its symmetric copies $S_{h}(U), S_{v}(U)$,
$S_{O}(U)$, we construct a closed surface in the following way.

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{i d, S_{h}, S_{V}, S_{O}\right\}$, we identify

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{i d, S_{h}, S_{V}, S_{O}\right\}$, we identify

- the upper side of $g(U)$ with the lower side of $S_{h} \circ g(U)$;

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{i d, S_{h}, S_{V}, S_{O}\right\}$, we identify

- the upper side of $g(U)$ with the lower side of $S_{h} \circ g(U)$;
- the lower side of $g(U)$ with the upper side of $S_{h} \circ g(U)$;

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{\mathrm{id}, S_{h}, S_{V}, S_{O}\right\}$, we identify

- the upper side of $g(U)$ with the lower side of $S_{h} \circ g(U)$;
- the lower side of $g(U)$ with the upper side of $S_{h} \circ g(U)$;
- the right side of $g(U)$ with the left side of $S_{v} \circ g(U)$;

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{\mathrm{id}, S_{h}, S_{V}, S_{O}\right\}$, we identify

- the upper side of $g(U)$ with the lower side of $S_{h} \circ g(U)$;
- the lower side of $g(U)$ with the upper side of $S_{h} \circ g(U)$;
- the right side of $g(U)$ with the left side of $S_{V} \circ g(U)$;
- the left side of $g(U)$ with the right side of $S_{v} \circ g(U)$.

The torus $\mathbb{T}_{a, b}$

For every $g \in G=\left\{\mathrm{id}, S_{h}, S_{V}, S_{O}\right\}$, we identify

- the upper side of $g(U)$ with the lower side of $S_{h} \circ g(U)$;
- the lower side of $g(U)$ with the upper side of $S_{h} \circ g(U)$;
- the right side of $g(U)$ with the left side of $S_{V} \circ g(U)$;
- the left side of $g(U)$ with the right side of $S_{v} \circ g(U)$.

Exercise: Prove that the space obtained in this way is naturally identified with the quotient space $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$.
Such a quotient of the plane by a lattice is called a (2-dimensional) flat torus.

From billiards trajectories to linear flows on the torus

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{u}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{\widetilde{u}}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{U}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.
Exercise: Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Set $\widetilde{u}=\cos \theta, \widetilde{v}=\sin \theta$. Check that the billiards trajectory $(x(t), y(t), \theta(t))$ with initial condition (x, y, θ) and the orbit $\Phi_{\tilde{u}, \tilde{v}}^{t}(x, y)$ are in correspondence in the following way

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{u}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.
Exercise: Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Set $\widetilde{u}=\cos \theta, \widetilde{v}=\sin \theta$. Check that the billiards trajectory $(x(t), y(t), \theta(t))$ with initial condition (x, y, θ) and the orbit $\Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ are in correspondence in the following way

- when $\theta(t)=\theta, \Phi_{\tilde{U}, \tilde{V}}^{t}(x, y)$ belongs to U and is equal to $(x(t), y(t))$;

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{u}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v})
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.
Exercise: Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Set $\widetilde{u}=\cos \theta, \widetilde{v}=\sin \theta$. Check that the billiards trajectory $(x(t), y(t), \theta(t))$ with initial condition (x, y, θ) and the orbit $\Phi_{\tilde{U}, \tilde{\mathrm{~V}}}^{t}(x, y)$ are in correspondence in the following way

- when $\theta(t)=\theta, \Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ belongs to U and is equal to $(x(t), y(t))$;
- when $\theta(t)=-\theta, \Phi_{\tilde{U}, \tilde{\mathcal{V}}}^{t}(x, y)$ belongs to $S_{h}(U)$ and is equal to

$$
S_{h}(x(t), y(t)) ;
$$

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{u}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.
Exercise: Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Set $\widetilde{u}=\cos \theta, \widetilde{v}=\sin \theta$. Check that the billiards trajectory $(x(t), y(t), \theta(t))$ with initial condition (x, y, θ) and the orbit $\Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ are in correspondence in the following way

- when $\theta(t)=\theta, \Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ belongs to U and is equal to $(x(t), y(t))$;
- when $\theta(t)=-\theta, \Phi_{\tilde{U}, \tilde{\mathcal{V}}}^{t}(x, y)$ belongs to $S_{h}(U)$ and is equal to $S_{h}(x(t), y(t))$;
- when $\theta(t)=\pi-\theta, \Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ belongs to $S_{v}(U)$ and is equal to $S_{v}(x(t), y(t))$;

Linear flows on tori

Given parameters $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, one defines a flow (called a linear flow) on $\mathbb{T}_{a, b}:=\mathbb{R}^{2} / 2 a \mathbb{Z} \oplus 2 b \mathbb{Z}$ by the formula

$$
\Phi_{\widetilde{\widetilde{u}}, \widetilde{v}}^{t}(x, y)=(x+t \widetilde{u}, y+t \widetilde{v}) .
$$

It satisfies the flow property $\Phi_{\widetilde{u}, \widetilde{v}}^{t+t^{\prime}}=\Phi_{\widetilde{u}, \widetilde{v}}^{t} \circ \Phi_{\widetilde{u}, \widetilde{v}}^{t^{\prime}}$.
Exercise: Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Set $\widetilde{u}=\cos \theta, \widetilde{v}=\sin \theta$. Check that the billiards trajectory $(x(t), y(t), \theta(t))$ with initial condition (x, y, θ) and the orbit $\Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ are in correspondence in the following way

- when $\theta(t)=\theta, \Phi_{\tilde{U}, \tilde{v}}^{t}(x, y)$ belongs to U and is equal to $(x(t), y(t))$;
- when $\theta(t)=-\theta, \Phi_{\tilde{U}, \tilde{\mathcal{V}}}^{t}(x, y)$ belongs to $S_{h}(U)$ and is equal to $S_{h}(x(t), y(t)) ;$
- when $\theta(t)=\pi-\theta, \Phi_{\tilde{u}, \tilde{v}}^{t}(x, y)$ belongs to $S_{v}(U)$ and is equal to $S_{v}(x(t), y(t))$;
- when $\theta(t)=\pi+\theta, \Phi_{\tilde{U}, \tilde{V}}^{t}(x, y)$ belongs to $S_{O}(U)$ and is equal to $S_{O}(x(t), y(t))$.

Reduction to the standard torus

The standard torus is $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and corresponds to the case $2 a=2 b=1$.

Reduction to the standard torus

The standard torus is $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and corresponds to the case $2 a=2 b=1$.

The map $h(x, y)=\left(\frac{x}{2 a}, \frac{y}{2 b}\right)$ is a homeomorphism and a group isomorphism from the torus $\mathbb{T}_{a, b}$ onto the standard torus.

Reduction to the standard torus

The standard torus is $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and corresponds to the case $2 a=2 b=1$.

The map $h(x, y)=\left(\frac{x}{2 a}, \frac{y}{2 b}\right)$ is a homeomorphism and a group isomorphism from the torus $\mathbb{T}_{a, b}$ onto the standard torus.
For $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, set $u:=\frac{\widetilde{u}}{2 a}, v:=\frac{\widetilde{v}}{2 b}$. The map h conjugates the flow $\Phi_{\widetilde{u}, \widetilde{v}}^{t}$ on $\mathbb{T}_{a, b}$ to the flow $\Phi_{u, v}^{t}$ on \mathbb{T}^{2}

$$
h \circ \Phi_{\widetilde{u}, \tilde{v}}^{t}=\Phi_{u, v}^{t} \circ h .
$$

Reduction to the standard torus

The standard torus is $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and corresponds to the case $2 a=2 b=1$.

The map $h(x, y)=\left(\frac{x}{2 a}, \frac{y}{2 b}\right)$ is a homeomorphism and a group isomorphism from the torus $\mathbb{T}_{a, b}$ onto the standard torus.
For $\widetilde{u}, \widetilde{v} \in \mathbb{R}$, set $u:=\frac{\widetilde{u}}{2 a}, v:=\frac{\widetilde{v}}{2 b}$. The map h conjugates the flow $\Phi_{\widetilde{u}, \widetilde{v}}^{t}$ on $\mathbb{T}_{a, b}$ to the flow $\Phi_{u, v}^{t}$ on \mathbb{T}^{2}

$$
h \circ \Phi_{\widetilde{u}, \tilde{v}}^{t}=\Phi_{u, v}^{t} \circ h .
$$

Thus, to study the billiards dynamics on a rectangular table, it is sufficient to understand linear flows on the standard torus.

Linear flows on \mathbb{T}^{2} : the main dichotomy

Let $(u, v) \neq(0,0)$ be parameters.

Linear flows on \mathbb{T}^{2} : the main dichotomy

Let $(u, v) \neq(0,0)$ be parameters.
Theorem:

1. if $\frac{u}{v} \in \mathbb{Q} \cup\{\infty\}$, every orbit of the flow $\Phi_{u, v}^{t}$ is periodic with the same period $T=T(u, v)$: we have $\Phi_{u, v}^{T}=\mathrm{id}_{\mathbb{T}^{2}}$ and thus $\Phi_{u, v}^{t}=\Phi_{u, v}^{t+T}$ for all $t \in \mathbb{R}$.

Linear flows on \mathbb{T}^{2} : the main dichotomy

Let $(u, v) \neq(0,0)$ be parameters.
Theorem:

1. if $\frac{u}{v} \in \mathbb{Q} \cup\{\infty\}$, every orbit of the flow $\Phi_{u, v}^{t}$ is periodic with the same period $T=T(u, v)$: we have $\Phi_{u, v}^{T}=\mathrm{id}_{\mathbb{T}^{2}}$ and thus $\Phi_{u, v}^{t}=\Phi_{u, v}^{t+T}$ for all $t \in \mathbb{R}$.
2. otherwise, every orbit of the flow is dense and even equidistributed in \mathbb{T}^{2} :

Linear flows on \mathbb{T}^{2} : the main dichotomy

Let $(u, v) \neq(0,0)$ be parameters.
Theorem:

1. if $\frac{u}{v} \in \mathbb{Q} \cup\{\infty\}$, every orbit of the flow $\Phi_{u, v}^{t}$ is periodic with the same period $T=T(u, v)$: we have $\Phi_{u, v}^{T}=\mathrm{id}_{\mathbb{T}^{2}}$ and thus $\Phi_{u, v}^{t}=\Phi_{u, v}^{t+T}$ for all $t \in \mathbb{R}$.
2. otherwise, every orbit of the flow is dense and even equidistributed in \mathbb{T}^{2} : this means that, for any continuous function φ on \mathbb{T}^{2} and any initial condition $\left(x_{0}, y_{0}\right) \in \mathbb{T}^{2}$, we have

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t=\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y
$$

The period in the rational case

In the case of rational slope, the period is equal to

The period in the rational case

In the case of rational slope, the period is equal to

- $\frac{1}{|u|}$ if $v=0$;

The period in the rational case

In the case of rational slope, the period is equal to

- $\frac{1}{|u|}$ if $v=0$;
- $\frac{1}{|v|}$ if $u=0$;

The period in the rational case

In the case of rational slope, the period is equal to

- $\frac{1}{|u|}$ if $v=0$;
- $\frac{1}{|v|}$ if $u=0$;
- when $\frac{u}{v}=\frac{p}{q}$ with integers p, q satisfying $p \wedge q=1$, we write $u=w p, v=w q$. The period is $\frac{1}{|w|}$.

Sketch of proof in the irrational case

In the case of irrational slope, one first observes that, when φ is a trigonometric polynomial

$$
\varphi(x, y)=\sum_{|j|+|k|<N} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

Sketch of proof in the irrational case

In the case of irrational slope, one first observes that, when φ is a trigonometric polynomial

$$
\varphi(x, y)=\sum_{|j|+|k|<N} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

one can write

$$
\varphi(x, y)=\varphi_{0,0}+u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

with $\varphi_{0,0}=\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y$ and

$$
\psi(x, y)=\frac{1}{2 \pi i} \sum_{(j, k) \neq(0,0)} \frac{\varphi_{j, k}}{j u+k v} \exp 2 \pi i(j x+k y)
$$

Sketch of proof in the irrational case

In the case of irrational slope, one first observes that, when φ is a trigonometric polynomial

$$
\varphi(x, y)=\sum_{|j|+|k|<N} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

one can write

$$
\varphi(x, y)=\varphi_{0,0}+u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

with $\varphi_{0,0}=\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y$ and

$$
\psi(x, y)=\frac{1}{2 \pi i} \sum_{(j, k) \neq(0,0)} \frac{\varphi_{j, k}}{j u+k v} \exp 2 \pi i(j x+k y)
$$

It follows that

$$
\begin{aligned}
\int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t & =T \varphi_{0,0}+\int_{0}^{T} \frac{d}{d t} \psi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t \\
& =T \varphi_{0,0}+\psi\left(\Phi_{u, v}^{T}\left(x_{0}, y_{0}\right)\right)-\psi\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Thus, we have the estimate

$$
\left|\frac{1}{T} \int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t-\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y\right| \leqslant \frac{2}{T} \max _{\mathbb{T}^{2}}|\psi|
$$

Thus, we have the estimate

$$
\left|\frac{1}{T} \int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t-\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y\right| \leqslant \frac{2}{T} \max _{\mathbb{T}^{2}}|\psi|
$$

which in this case is stronger than required by the theorem.

Thus, we have the estimate

$$
\left|\frac{1}{T} \int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t-\int_{\mathbb{T}^{2}} \varphi(x, y) d x d y\right| \leqslant \frac{2}{T} \max _{\mathbb{T}^{2}}|\psi|,
$$

which in this case is stronger than required by the theorem.
For a general continuous function φ on \mathbb{T}^{2}, one uses the case of trigonometric polynomials and (a particular case of) Stone-Weierstrass theorem: any continuous function can be uniformly approximated by a trigonometric polynomial (details on blackboard if available; exercise otherwise).

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.
We have seen that any trigonometric polynomial φ of mean 0 can be written as

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

where ψ is another trigonometric polynomial.

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.
We have seen that any trigonometric polynomial φ of mean 0 can be written as

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

where ψ is another trigonometric polynomial. The coefficients of φ, ψ are related by

$$
\psi_{j, k}=\frac{\varphi_{j, k}}{2 \pi i(j u+k v)}, \quad(j, k) \neq(0,0)
$$

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.
We have seen that any trigonometric polynomial φ of mean 0 can be written as

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

where ψ is another trigonometric polynomial. The coefficients of φ, ψ are related by

$$
\psi_{j, k}=\frac{\varphi_{j, k}}{2 \pi i(j u+k v)}, \quad(j, k) \neq(0,0)
$$

For a general smooth function φ of mean 0 , we have an infinite Fourier expansion

$$
\varphi(x, y)=\sum_{(j, k) \neq(0,0)} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.
We have seen that any trigonometric polynomial φ of mean 0 can be written as

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

where ψ is another trigonometric polynomial. The coefficients of φ, ψ are related by

$$
\psi_{j, k}=\frac{\varphi_{j, k}}{2 \pi i(j u+k v)}, \quad(j, k) \neq(0,0)
$$

For a general smooth function φ of mean 0 , we have an infinite Fourier expansion

$$
\varphi(x, y)=\sum_{(j, k) \neq(0,0)} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

which allows to define the coefficients $\psi_{j, k}$ as above,

Small divisors

Assume that $\alpha:=\frac{u}{v}$ is irrational.
We have seen that any trigonometric polynomial φ of mean 0 can be written as

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

where ψ is another trigonometric polynomial. The coefficients of φ, ψ are related by

$$
\psi_{j, k}=\frac{\varphi_{j, k}}{2 \pi i(j u+k v)}, \quad(j, k) \neq(0,0)
$$

For a general smooth function φ of mean 0 , we have an infinite Fourier expansion

$$
\varphi(x, y)=\sum_{(j, k) \neq(0,0)} \varphi_{j, k} \exp 2 \pi i(j x+k y)
$$

which allows to define the coefficients $\psi_{j, k}$ as above, but the formal Fourier series $\sum_{(j, k) \neq(0,0)} \psi_{j, k} \exp 2 \pi i(j x+k y)$ does not always correspond to a true function ψ !

Diophantine numbers

Definition: An irrational number α is diophantine if there exists $\tau \geq 0, \gamma>0$, such that, for all $(j, k) \neq(0,0)$ in \mathbb{Z}^{2}, one has

$$
|j \alpha+k| \geq \gamma(|j|+|k|)^{-1-\tau}
$$

Diophantine numbers

Definition: An irrational number α is diophantine if there exists $\tau \geq 0, \gamma>0$, such that, for all $(j, k) \neq(0,0)$ in \mathbb{Z}^{2}, one has

$$
|j \alpha+k| \geq \gamma(|j|+|k|)^{-1-\tau}
$$

An irrational number which is not diophantine is called a Liouville number.

Diophantine numbers

Definition: An irrational number α is diophantine if there exists $\tau \geq 0, \gamma>0$, such that, for all $(j, k) \neq(0,0)$ in \mathbb{Z}^{2}, one has

$$
|j \alpha+k| \geq \gamma(|j|+|k|)^{-1-\tau}
$$

An irrational number which is not diophantine is called a Liouville number.
Almost all real numbers are (irrational and) diophantine.

Diophantine numbers

Definition: An irrational number α is diophantine if there exists $\tau \geq 0, \gamma>0$, such that, for all $(j, k) \neq(0,0)$ in \mathbb{Z}^{2}, one has

$$
|j \alpha+k| \geq \gamma(|j|+|k|)^{-1-\tau}
$$

An irrational number which is not diophantine is called a Liouville number.
Almost all real numbers are (irrational and) diophantine.
Any irrational real algebraic number is diophantine: actually, it satisfies the above condition for any $\tau>0$ (and appropriate $\gamma=\gamma(\tau))$; this is the content of Roth's theorem..

Birkhoff averages of smooth functions for diophantine linear flows

Denote by $C^{\infty}\left(\mathbb{T}^{2}\right)$ the set of continuous functions on \mathbb{T}^{2} which have continuous partial derivatives of any order.

Birkhoff averages of smooth functions for diophantine linear flows

Denote by $C^{\infty}\left(\mathbb{T}^{2}\right)$ the set of continuous functions on \mathbb{T}^{2} which have continuous partial derivatives of any order.
A function φ belongs to $C^{\infty}\left(\mathbb{T}^{2}\right)$ iff its Fourier coefficients $\varphi_{j, k}$ satisfy:

Birkhoff averages of smooth functions for diophantine linear flows

Denote by $C^{\infty}\left(\mathbb{T}^{2}\right)$ the set of continuous functions on \mathbb{T}^{2} which have continuous partial derivatives of any order.
A function φ belongs to $C^{\infty}\left(\mathbb{T}^{2}\right)$ iff its Fourier coefficients $\varphi_{j, k}$ satisfy:

$$
\forall N>0, \quad\left|\varphi_{j, k}\right|<(|j|+|k|)^{-N}
$$

for $|j|+|k|$ large enough.

Birkhoff averages of smooth functions for diophantine linear flows

Denote by $C^{\infty}\left(\mathbb{T}^{2}\right)$ the set of continuous functions on \mathbb{T}^{2} which have continuous partial derivatives of any order.
A function φ belongs to $C^{\infty}\left(\mathbb{T}^{2}\right)$ iff its Fourier coefficients $\varphi_{j, k}$ satisfy:

$$
\forall N>0, \quad\left|\varphi_{j, k}\right|<(|j|+|k|)^{-N}
$$

for $|j|+|k|$ large enough.
Thus, if $\alpha:=\frac{u}{v}$ is diophantine and $\varphi \in C^{\infty}\left(\mathbb{T}^{2}\right)$ has mean zero, one can write

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

with $\psi \in C^{\infty}\left(\mathbb{T}^{2}\right)$.

Birkhoff averages of smooth functions for diophantine linear flows

Denote by $C^{\infty}\left(\mathbb{T}^{2}\right)$ the set of continuous functions on \mathbb{T}^{2} which have continuous partial derivatives of any order.
A function φ belongs to $C^{\infty}\left(\mathbb{T}^{2}\right)$ iff its Fourier coefficients $\varphi_{j, k}$ satisfy:

$$
\forall N>0, \quad\left|\varphi_{j, k}\right|<(|j|+|k|)^{-N}
$$

for $|j|+|k|$ large enough.
Thus, if $\alpha:=\frac{u}{v}$ is diophantine and $\varphi \in C^{\infty}\left(\mathbb{T}^{2}\right)$ has mean zero, one can write

$$
\varphi=u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y}
$$

with $\psi \in C^{\infty}\left(\mathbb{T}^{2}\right)$.
One has then

$$
\left|\int_{0}^{T} \varphi\left(\Phi_{u, v}^{t}\left(x_{0}, y_{0}\right)\right) d t\right| \leqslant 2 \max _{\mathbb{T}^{2}}|\psi|
$$

Summary

- Dichotomy between the rational case with periodic trajectories

Summary

- Dichotomy between the rational case with periodic trajectories and the irrational case with uniformly distributed trajectories.

Summary

- Dichotomy between the rational case with periodic trajectories and the irrational case with uniformly distributed trajectories.
- In the diophantine irrational case, one has very good estimates for the Birkhoff averages of smooth functions.

Thanks for your attention

