In fact... (Part 3/3)

- 13) A few (= $10^{0.5}$) mm in diameter. Balance the surface tension $\sigma 2\pi(r/2)$ of the neck against the weight $\rho q 4\pi r^3/3$ of the bulb as the droplet is about to snap.
 - How slowly are water droplets in a cloud falling, and how small are they? [1 cm/sec, for a fog settles down 100 m in hours. Balance viscous drag $6\pi\mu_{\rm air}rv$ against gravity $\rho_{\rm water}\,g\,4\pi r^3/3$ to find $r\approx$ microns. Small enough to scatter light effectively, making clouds look white.]
- 14) Balance weight $\propto \ell^2$ against drag $\propto \ell^2 v^2$ to get $v \approx \text{const.}$ independent of ℓ . This is because paper cones were 2-dimensional: for 3-dimensional solids, weight $\propto \ell^3$ and $v \propto \sqrt{\ell}$.
 - How does the swimming speed scale with the swimmer's size? [In a high-Re flow, power consumed $\sim \operatorname{drag} \cdot \operatorname{speed} \propto \ell^2 v^2 \cdot v$, while power generated $\propto \ell^2$. Balancing, $v \approx \operatorname{const.}$ independent of ℓ . In a low-Re flow (e.g. bacteria), $\operatorname{drag} \propto \ell v$, which leads to $v \propto \sqrt{\ell}$.]
- 15) As the animal crouches, rises, and jumps, its muscles exert a force $\propto \ell^2$ over a displacement $\sim \ell$. This accumulated energy $\propto \ell^3$ is converted to potential $mgh \propto \ell^3 h$. Hence $h \approx \text{const.}$ independent of ℓ .
 - How high do real animals jump? [From locusts to humans, spanning a range of mass of 4 orders of magnitude, about half a meter. However, dwarfs like fleas cannot jump that high because, owing to the large area/volume ratio, air resistance literally becomes a drag for them; neither can giants like elephants, who would break their bones if they tried.]
- 16) Let $v = \text{speed of air thrust downward. Thrust mass/time} \propto \text{wing area} \cdot v \sim \ell^2 v$. The momentum/time $\propto \ell^2 v \cdot v$ must balance the weight $\propto \ell^3$, hence $v \propto \sqrt{\ell}$. The bird's power supplies the kinetic energy/time of the thrust $\propto \ell^2 v \cdot v^2 \propto \ell^{3.5}$. On the other hand, the bird generates power $\propto \ell^2$.
 - Now draw the graphs of $\ell \mapsto \ell^2$ and of $\ell \mapsto \ell^{3.5}$; coefficients depend only on materials from which all birds are made. They cross at 0 and say ℓ_* . Between 0 and ℓ_* , ℓ^2 is above $\ell^{3.5}$, so the bird has a surplus of power. Beyond ℓ_* , ℓ^2 is below $\ell^{3.5}$, so a deficit.
 - How large is the largest flying bird? [Otis tarda (great bustard), ℓ_* corresponding to 20 kg.]
- 17) Let $\ell = \text{crack length}$; (energy spent creating the crack) $\propto \ell$, (energy released by the crack created) $\propto \ell^2$, and the critical length corresponds to where the graphs of ℓ and ℓ^2 cross.
 - Why at any institution must managers proliferate and end up taking over? [Given N real workers, managers number cN^2 , c some coefficient, since managers busy themselves with inter-personal relations, which are modeled as diagonals of an N-gon. As N increases, cN^2 will beat N however small c may be. But there is worse: super-managers will proliferate $\propto N^4$, super-super-managers $\propto N^8$, etc.]
- 18) At t the walker is likely to be in a volume $\propto \sqrt{t}^d$, so the probability of her being back at the starting point at this instant decays like $\propto t^{-d/2}$. Recurrence means (Borel-Cantelli lemma) these probabilities get cumulated enough, i.e. $\sum_t t^{-d/2} = \zeta(d/2) = \infty$.
 - How does the time to boil an egg scale with its size? [Time \propto diameter².]
 - In a fluid flow with parameters ρ , v, ℓ , μ , find two time-scales and their physical interpretations.
- $[t_{\rm C}=\ell/v \text{ and } t_{\rm D}=\rho\,\ell^2/\mu$, which we call convection time and diffusion time respectively. $t_{\rm C}$ is the time it takes the material fluid to travel around the body. The scaling $\ell=\sqrt{\mu/\rho}\cdot\sqrt{t_{\rm D}}\propto\sqrt{t_{\rm D}}$ is characteristic of diffusion: $t_{\rm D}$ is the time it takes for the velocity field to be smoothed out by random spreading, fore and aft of the body. Re $=t_{\rm D}/t_{\rm C}$. Different parts of the flow act as individualists when Re $\gg 1$, as conformists when Re $\ll 1$.]
 - Why does the accuracy of a guess tend to improve if you decompose it into factors and guess each factor independently ('divide and conquer')? $[q^{\pm 1/n} \cdots q^{\pm 1/n} = q^{(\pm 1 \cdots \pm 1)/n} \approx q^{\pm \sqrt{n}/n} \to 1 \text{ as } n \to \infty.]$