An invitation to simple modeling of complex phenomena

T. Tokieda Lyon, August 2012 A pure mathematician's healthy balance :

examples \gg # theorems \gg # definitions

An applied mathematician's healthy balance :

phenomena explained/predicted $\gg \#$ models $\gg \#$ principles

This balance is achievable only if we

- strive for simplicity as we go phenomena \rightarrow models \rightarrow principles
- forage for diversity as we go phenomena \leftarrow models \leftarrow principles.

An easy problem : a pendulum

What is the *period*?

[Foucault's pendulum, Panthéon, Paris]

Three approaches to modeling :

1) *minimal: dimensional analysis* (before we know anything)

2) *intermediate: back-of-the-envelope estimate* (once we know something)

3) *maximal: solving the full equations* (after we know everything already)

1) Minimal: dimensional analysis

variables
$$m$$
 ℓ g θ_{max} τ dimensions (units)ML $\frac{\mathbf{L}}{\mathbf{T}^2}$ 1T

 $[mass] = \mathbf{M} \qquad [length] = \mathbf{L} \qquad [time] = \mathbf{T}$

5 variables, 3 basic dimensions

 \implies 5 – 3 = 2 dimensionless groupings among variables

$$\Pi_1 = \frac{g\tau^2}{\ell} \sim 1 \qquad \qquad \Pi_2 = \theta_{\max} \sim 1$$

Underlying mathematical mechanism:

$$m^x \ell^y g^z \theta_{\max}{}^u \tau^v \sim 1$$

 $\mathbf{M}^{x}\mathbf{L}^{y+z}\mathbf{T}^{-2z+v} = \mathbf{M}^{0}\mathbf{L}^{0}\mathbf{T}^{0}$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

i.e. just *linear algebra* .

$$\Pi_1 = \frac{g\tau^2}{\ell} \sim 1 \qquad \Pi_2 = \theta_{\max} \sim 1$$

Laws of nature must be expressible in *dimensionless form* :

 $F(\Pi_1,\Pi_2)=0$

or solving for $\ \Pi_1$,

$$\Pi_1 = f(\Pi_2)$$
$$\tau = \sqrt{\frac{\ell}{g} \cdot f(\theta_{\max})}$$

We did not have to think about physics, yet we obtained the most interesting feature of the answer :

For deeper dimensional analysis, see

Barenblatt, *Scaling* (Cambridge UP)

It is surprisingly deep, leading to *renormalization group*, a powerful method in statistical physics, probability, etc.

Hierarchy of `equalities' :

exactly equal

size of coefficient near 1

 \sim

dimensionally correct equality but no control over size of dimensionless coefficient

 \propto

proportional but coefficient may have nontrivial dimension

2) Intermediate: back-of-the-envelope estimate

Assume $\theta_{\rm max} \ll 1$

Periodic oscillation near equilibrium
... model it as a *spring* !

restoring force
$$\approx m g$$

mass $= m$
acceleration $\approx \omega^2 \ell$ \implies $m \omega^2 \ell \approx m g$
 \implies $\tau = \frac{2\pi}{\omega} \approx 2\pi \sqrt{\frac{\ell}{g}}$

This time we thought a little about physics, and identified the dimensionless coefficient 2π .

3) Maximal: solving the full equation

$$m \frac{\mathrm{d}^2}{\mathrm{d}t^2} \,\ell\,\theta = -m\,g\,\ell\,\sin\theta$$

 $\dot{ heta} imes$ and integrate :

$$\implies \quad \tau = 4\sqrt{\frac{\ell}{g}} \int_0^{\pi/2} \frac{\mathrm{d}\varphi}{\sqrt{1 - k^2 \sin^2\varphi}} \,, \qquad \sin\frac{\theta}{2} = k\sin\varphi$$

$$=4\sqrt{\frac{\ell}{g}}\int_0^{\pi/2} \mathrm{d}\varphi \Big(1+\frac{1}{2}k^2\sin^2\varphi+\cdots\Big)=\left|2\pi\sqrt{\frac{\ell}{g}}\Big(1+\frac{1}{4}k^2+\cdots\Big)\right|$$

period au

 θ_{\max}

m

g

complicated, precise fragile, remote, finished textbooks . . .

In her/his research, a good applied mathematician should try

1) dimensional analysis on some new problem once a day

2) back-of-the-envelope estimate once a week

3) solving the full equations once a season

Thus, most of an applied mathematician's life is spent on doing 1) and 2), so it is urgent that you

get into the habit of

dimensional analysis + *back-of-the-envelope estimates*

Biological applications

How does the animal's **power** P depend on its size in length ℓ ?

- The cross-sectional area of its bones $\propto \ell^{\,2}$.
- The animal does not overheat spontaneously, but it radiates heat through its skin whose area $\,\propto\,\ell^{\,2}$.

For all these reasons,

$$P \propto \ell^2$$

When running uphill, the animal must lift its own weight $W \propto \ell^{3}$.

So the uphill speed
$$\propto rac{P}{W} \propto rac{\ell^2}{\ell^3} = rac{1}{\ell}$$

This $\frac{P}{W} \propto \frac{1}{\ell}$ is a severe handicap for larger animals.

For example

- a mouse falling from a 2nd floor would feel nothing,
- a human might break a leg,
- an elephant would not survive.

Many compensate by having STURDIER skeletons than smaller animals.

gorilla

In contrast, when running on flat ground, the *drag* (resistance force) D by the air varies like $\propto \ell^2$.

So the speed
$$\propto \frac{P}{D} \propto \frac{\ell^2}{\ell^2}$$
 is independent of ℓ

i.e. on flat ground all animals run at similar speeds.

Animal	Body mass, M(kg)	Leg length, L_0 (m)	Speed (m s ⁻¹)	Froude number $u/(gL_0)^{0.5}$
Kangaroo rat	0.112	0.099	1.8	1.8
White rat	0.144	0.065	1.1	1.4
Tammar wallaby	6.86	0.33	3.0	1.7
Dog	23.6	0.50	2.8	1.3
Goat	25.1	0.48	2.8	1.3
Red kangaroo	46.1	0.58	3.8	1.6
Horse	135	0.75	2.9	1.1

(from C. Farley, et al., J. exp. Biol. 1993)

A very difficult problem

`Trinity test' – first man-made nuclear explosion16 July 1945desert of Jornada del Muerto, New Mexico.

This photo appeared in newspapers, whereas the *energy* of the explosion was classified top secret . . .

But G. I. Taylor estimated this energy and published it in *Proc. Roy. Soc.* 1950, causing widespread embarrassment.

We shall now retrace G. I.'s argument, a classic masterpiece of dimensional analysis.

G. I. Taylor (1886–1975): this man

The shock wave is so intense that ρ matters, p does not (we think a little physics here).

$$\implies$$
 4 – 3 = 1 dimensionless grouping $\Pi = \left(\frac{E t^2}{\rho}\right)^{\frac{1}{5}} \frac{1}{r}$

$$\Pi = \left(\frac{E\,t^2}{\rho}\right)^{\frac{1}{5}} \frac{1}{r}$$

$$F(\Pi) = 0$$
$$\Pi = \text{const.}$$

$$E = (\text{const. } r)^5 \, \frac{\rho}{t^2}$$

An experiment using a dynamite shows $\ const.\approx 1.$ Theoretically too we can show

const. =
$$\left(\frac{75(\gamma-1)}{8\pi}\right)^{\frac{1}{5}} \approx 1.036$$

where $\gamma \approx 1.4$

For a fixed value of E in $E = (\text{const. } r)^5 \frac{\rho}{t^2}$

It came out automatically from dimensional analysis.

With

$$t = 2.5 \times 10^{-2} \text{ sec}$$

$$r = 1.4 \times 10^{2} \text{ m}$$

$$\rho = 1 \text{ kg/m}^{3} \text{ (at 1500 m altitude)}$$

A geometric application

A right triangle is completely determined by its hypotenuse $h\,$ and one of its acute angles $\theta\,.$

In particular, its area A is determined.

The dimensionless groupings are
$$\Pi_1 = \frac{A}{h^2} \sim 1$$
 and $\Pi_2 = \theta \sim 1$.
 $\Pi_1 = f(\Pi_2)$
 $A = h^2 f(\theta)$ (in fact $f(\theta) = \frac{1}{2} \cos \theta \sin \theta$)

Here two triangles add to a large triangle

$$a^2 f(\theta) + b^2 f(\theta) = c^2 f(\theta)$$

Canceling $f(\theta)$, we have Pythagoras.

In spherical K > 0 or hyperbolic K < 0 geometry, the Gauss-Bonnet formula

$$\iint_P K \,\mathrm{d(area)} + \int_{\partial P} \kappa_g \,\mathrm{d(length)} = 2\pi$$

implies that the area of a geodesic polygon is determined by the sum of its angles :

$$K \cdot \operatorname{area}(P) + \sharp \operatorname{vertices}(P) \cdot \pi - \sum \theta = 2\pi$$

So P can never be decomposed into smaller polygons similar to P.

In these non-Euclidean geometries, no theorem of Pythagorean type that is *scaling-invariant*.

Review of what we saw in lecture 1/3

- importance of dimensional analysis and back-of-the-envelope estimates
- $\bullet\,\propto\,\,\sim\,\,\approx\,\,=\,$
- period of pendulum
- animal running uphill, on flat ground
- nuclear explosion
- Pythagorean theorem

