Helpful Numbers

compiled by Tadashi Tokieda, August 2012

conversion factors

 $1 \,\mathrm{eV} \approx 16 \times 10^{-20} \,\mathrm{J}$ $0^{\circ}\text{C} = 273.15\,\text{K}$

 $1 \, \mathrm{cal} \approx 4.2 \, \mathrm{J}$

 $1 p_{\rm atm} \approx 10^5 \, \rm Pa$

 $1 \text{ year} \approx \pi \times 10^7 \text{ sec}$

length

wavelength of visible light $\approx \frac{1}{2} \times 10^{-6} \,\mathrm{m}$

radius of the Earth $R_{\oplus} = 4 \times 10^7/\,2\pi\,\mathrm{m}$

of the Moon $\approx \frac{1}{4} R_{\oplus}$ of the Sun $\approx 100 R_{\oplus}$

distance Earth-Moon $\approx 60 R_{\oplus}$

Earth-Sun $\approx \frac{1}{4} \times 10^5 R_{\oplus} = 1 \,\text{AU}$

time

frequency of C_4 (middle do) $\approx 262\,\mathrm{Hz}$

age of the solar system $\approx 4.6 \times 10^9 \text{ years}$

of the genus $Homo \approx 2.3 \times 10^6 \text{ years}$

speed

speed of light in vacuum $c \approx 3 \times 10^8 \,\mathrm{m/sec}$

of sound in air $\approx 345 \,\mathrm{m/sec}$

mass

mass of an electron $m_e \approx 10^{-30} \,\mathrm{kg}$

of a proton $\approx \frac{5}{3} \times 10^3 \, m_e$

density of water $\rho_{\text{water}} = 1 \,\text{g/cm}^3$

of air $\approx \frac{1.2}{1000} \rho_{\text{water}}$

of the Sun $\approx 1.4 \rho_{\text{water}}$

density of the Earth $\approx 5.5 \, \rho_{\rm water}$

of the Moon $\approx 3.3 \, \rho_{\text{water}}$

mass of the Earth $M_{\oplus} \approx 6 \times 10^{24} \,\mathrm{kg}$ of the Moon $\approx \frac{1}{80} \,M_{\oplus}$ of the Sun $\approx \frac{1}{3} \times 10^6 \,M_{\oplus}$

gravitation

gravitational constant $G \approx \frac{2}{3} \times 10^{-10} \,\mathrm{m}^3/(\mathrm{kg}\cdot\mathrm{sec}^2)$

gravitational acceleration on the Earth surface $g \approx 10 \,\mathrm{m/sec^2}$

weight of a small apple $\approx 1 \,\mathrm{N}$

atom

Planck constant $\hbar \approx 10^{-34} \, \mathrm{J \cdot sec}$

fine structure constant $\alpha = \frac{e^2}{4\pi\varepsilon_0} \frac{1}{\hbar c} \approx \frac{1}{137}$

fluid

viscosity of water $\mu_{\rm water} \approx 10^{-3} \, {\rm Pa \cdot sec}$

of air $\approx \frac{1}{50} \mu_{\text{water}}$

surface tension of water $\approx 0.07 \,\mathrm{J/m^2}$

thermodynamics

Boltzmann constant $k_{\rm B} \approx 1.4 \times 10^{-23} \, {\rm J/K}$

 $k_{\rm B}T$ at room temperature $\approx \frac{1}{40} \, {\rm eV} \approx 4 \, {\rm pN \, nm}$

Avogadro's number $N_{\rm A} \approx 6 \times 10^{23}$

of air $\approx 1 \,\mathrm{J/(g \cdot K)}$

heat capacity of liquid water = $1 \operatorname{cal}/(g \cdot K)$ water's enthalpy of vaporization $\approx 500 \, \mathrm{cal/g}$

of fusion $\approx 80 \, \mathrm{cal/g}$

solar power on ground at midday $\approx 1000 \,\mathrm{W/m^2}$

metabolic rate of a seated adult $\approx 100 \,\mathrm{W}$