Elliptic curves

(1) Prove that the elliptic curve

$$
E: \quad y^{2}=x^{3}-x
$$

has no points of order 4 over \mathbb{Q} under the "chord-tangent law". (Hint. First determine the points of order 2 , and then determine the conditions which are required for a point P to have the property that $2 P$ is one of these points.)
(2) The number 5 is congruent. Use the results from the lecture to produce 4 rational points $(x, y) \in \mathbb{Q}^{2}$ with $y \neq 0$ on the elliptic curve

$$
E(5): \quad y^{2}=x^{3}-25 x
$$

(3) Let D be a positive integer. Prove that if there is a point $(x, y) \in \mathbb{Q}^{2}$ for which

$$
y^{2}=x^{3}-D^{2} x
$$

and $y \neq 0$, then D is a congruent number.
(4) How many rational right triangles with area 5 can one directly construct using just these 4 points? Construct them.
(5) Prove that there are infinitely many rational right triangles with area 5.
(6) Consider the elliptic curve

$$
E: \quad y^{2}=x^{3}+1
$$

For primes p let $a_{E}(p):=p-N(p)$, where

$$
N(p):=\#\left\{(x, y) \quad(\bmod p): y^{2} \equiv x^{3}+1 \quad(\bmod p)\right\}
$$

a) Compute $a_{E}(p)$ for the primes $p \in\{5,7,11,13,17,19\}$.
b) Compute the coefficients $A(n)$, for $n \leq 20$, of the infinite product

$$
\sum_{n=1}^{\infty} A(n) q^{n}:=q \prod_{n=1}^{\infty}\left(1-q^{6 n}\right)^{4}=q-4 q^{7}+\ldots .
$$

(Hint. Use the Euler and Jacobi identities from the "partitions" lecture.).
c) Compare $A(p)$ and $a_{E}(p)$ for the primes $p \in\{5,7,11,13,17,19\}$.
d) For primes $p \equiv 2(\bmod 3)$, prove your speculation (i.e. $A(p)=a_{E}(p)$ for all primes $p \geq 5$). (Hint. First show that $A(p)=0$ for such p. Then show that $N(p)=p$ for these p using a group homomorphism $x \rightarrow x^{3}$ on the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$.)

