Partitions

(1) Use Euler's recurrence for the partition function $p(n)$ to prove that there are infinitely many n (resp. m) for which $p(n)$ (resp. $p(m)$) is even (resp. odd).
(2) Use Jacobi's Triple Product Identity to prove that

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3}=\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) q^{\left(k^{2}+k\right) / 2}
$$

(3) Recall that Ramanujan proved that

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+6) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

a) If ℓ is prime, then define integers $a_{\ell}(n)$ by

$$
\sum_{n=0}^{\infty} a_{\ell}(n) q^{n}:=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\ell-1}
$$

For $0 \leq \delta<\ell$, prove that

$$
p(\ell n+\delta) \equiv 0 \quad(\bmod \ell)
$$

for all $n \geq 0$ if and only if

$$
a_{\ell}(\ell n+\delta) \equiv 0 \quad(\bmod \ell)
$$

(Hint. Use the infinite product generating function for $p(n)$ and the fact that $(1-X)^{\ell} \equiv$ $1-X^{\ell}(\bmod \ell)$.)
b) For $\ell=5$, give a closed formula for $a_{5}(n)$ using the fact that

$$
\sum_{n=0} a_{5}(n) q^{n}=\left(\prod_{n=1}^{\infty}\left(1-q^{n}\right)\right) \cdot\left(\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3}\right)
$$

(Hint. Use Euler's and Jacobi's identities.)
c) Prove that $a_{5}(5 n+4) \equiv 0(\bmod 5)$ for all $n \geq 0$.
(4) Using the method above, prove that $p(7 n+5) \equiv 0(\bmod 7)$ for all $n \geq 0$.
(5) Try to prove that $p(11 n+6) \equiv 0(\bmod 11)$ for all $n \geq 0$.

