Solutions for some of the exercises of Ken Ono (1)

François Le Maître
francois.le_maitre@ens-lyon.fr

24 août 2012

If you find any mistakes, please email me. Also if after reading this you still can't do the exercises, email me too, and I will provide complete answers. This page will eventually contain a sketch of the answers to exercise 3.

Recall the definition of the partition function :

$$
p(n)=\#\left\{k_{1} \geq \cdots \geq k_{l} \geq 1: n=k_{1}+\cdots+k_{l}\right\} .
$$

So for instance $p(4)=4$, because $4=4=3+1=2+1+1=1+1+1+1$. We now need to find the generating function of $p(n)$, which is by definition the following power series :

$$
f(q)=\sum_{n=0}^{+\infty} p(n) q^{n}
$$

Why would we be interested in such functions? Because they often have nicer expressions, which happen to be very handy. For $p(n)$, we actually have the following formula :

$$
\sum_{n=0}^{+\infty} p(n) q^{n}=\prod_{n=1}^{+\infty} \frac{1}{1-q^{n}}
$$

In order to prove this, we need the following : $\frac{1}{1-x}=\sum_{n=0}^{+\infty} x^{n}$. Now we can rewrite $\prod_{n=1}^{+\infty} \frac{1}{1-q^{n}}$ as

$$
\prod_{n=1}^{+\infty} \frac{1}{1-q^{n}}=\left(1+q+q^{2}+\cdots\right)\left(1+q^{2}+q^{4}+\cdots\right)\left(1+q^{3}+q^{6}+\cdots\right) \cdots
$$

So to find the coefficients of the power series development of this product, we have to count how many times each q^{n} appears as ta product. We want to show this number is $p(n)$. The key is to rewrite a partition of n as

$$
n=\underbrace{1+\cdots+1}_{m_{1} \text { times }}+\underbrace{2+\cdots+2}_{m_{2} \text { times }}+\cdots+\underbrace{k+\cdots+k}_{m_{k} \text { times }}=m_{1} \cdot 1+\cdots+m_{k} \cdot k,
$$

we associate to it the product of $q^{m_{1}}$ from the first sum, $q^{2 m_{2}}$ from the second sum,..., $q^{k m_{k}}$ from the k 'th sum, to get indeed $q^{m_{1}+2 m_{2}+\cdots+k m_{k}}=q^{n}$. Check that this actually lists all the ways of getting some q^{n}.

Exercise 1. Prove that there are infinitely many n 's such that $p(n)$ is even, and infinitely many n 's such that $p(n)$ is odd. You may use Euler's recurrence (without proving it !) :

$$
p(n)+\sum_{k=1}^{\infty}(-1)^{k}\left[p\left(n-\frac{k(3 k+1)}{2}\right)+p\left(n-\frac{k(3 k-1)}{2}\right)\right]=0
$$

Remark that the infinite sum over the k 's is actually finite, as $p(m)=0$ for $m \leq 0$.
Sketch of the answer. This is a proof by contradiction, in the same spirit as Euclid's proof that there are infinitely many prime numbers. So suppose for instance that there are only finitely many n 's such that $p(n)$ is even. Let N be the greatest number for which $p(N)$ is even. The key thing is that the "gaps" between all the $k(3 k \pm 1) / 2$ goes to infinity when k tends to infinity, in particular there is k_{0} such that the gap is greater than $N+1$ for $k \geq k_{0}$. Now for $n \gg N$ well chosen $\left(n-\frac{k_{0}\left(3 k_{0}-1\right)}{2}=N+1\right.$ for instance), $n-\frac{k(3 k \pm 1)}{2}$ will never be in between 0 and N, by the above formula $p(n)$ is a sum of terms which are either (odd+odd) or 0 , hence even. But then $p(n)$ is even, a contradiction as $n>N$.

And if there are finitely many n 's such that $p(n)$ is odd, do almost the same trick by this time finding n such that there will be a unique $k \geq k_{0}$ and such that $n-k(3 k+1) / 2$ is in between 0 and N, and such that for this $k, n-k(3 k+1) / 2=1$. Then show that for some $n>N p(n)$ has the parity of $p(1)=1$, a contradiction.

Exercise 2. Show the following formula, which will be useful for exercise 3 :

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3}=\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) q^{\left(k^{2}+k\right) / 2}
$$

You may use Jacobi's triple product formula (still without proving it!) :

$$
\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)\left(1-x^{2 n-1} z\right)\left(1-x^{2 n-1} z^{-1}\right)=\sum_{n=-\infty}^{+\infty} x^{n^{2}} z^{n}
$$

Sketch of the answer. The first thing you want to do to get some q^{n} 's is to make the following change of variables : $x=\sqrt{q}$ and $z=-\sqrt{q}$, so that the expression on the left of Jacobi's triple product formula becomes

$$
\prod_{n=1}^{+\infty}\left(1-q^{n}\right)\left(1-q^{n}\right)\left(1-q^{n-1}\right)
$$

Unfortunately as you can see when $n=1$, we have the last term $\left(1-q^{0}\right)=0$, so the whole product is null, and we are proving $0=0$, which is not really deep. So we want to somehow remove that term, and one way to do this is to still put $x=\sqrt{q}$, but let z vary for a while. We first get

$$
\prod_{n=1}^{+\infty}\left(1-q^{n}\right)\left(1+q^{n-1 / 2} z\right)\left(1+q^{n-1 / 2} z^{-1}\right)=\sum_{n=-\infty}^{+\infty} q^{n^{2} / 2} z^{n}
$$

Now we want to put the term which would cancel the product if $z=-\sqrt{q}$ on the right side, so we divide everything by $\left(1+q^{1 / 2} z^{-1}\right)$, which is $\left(1+q^{n-1 / 2} z^{-1}\right)$ for $n=1$. Now the left term is

$$
\prod_{n=1}^{+\infty}\left(1-q^{n}\right)\left(1+q^{n-1 / 2} z\right)^{2}
$$

which tends to the promised $\prod_{n=1}^{+\infty}\left(1-q^{n}\right)^{3}$ when $z \rightarrow-\sqrt{q}$. Now use L'Hospital's lemma. This says if f and g are derivable functions such that $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ when $x \rightarrow a$, then

$$
\frac{f(x)}{g(x)} \rightarrow \frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

whenever this last fraction makes sense.

