Pythagoras \implies \$1 million problem

Ken Ono Emory University

The Pythagorean Theorem

Theorem (Pythagoras)

If (a, b, c) is a right triangle, then

$$a^2 + b^2 = c^2.$$

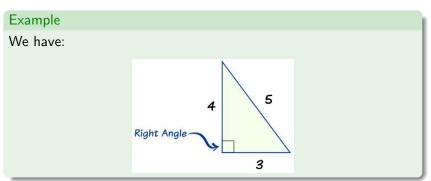
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Pythagorean Theorem

Theorem (Pythagoras)

If (a, b, c) is a right triangle, then

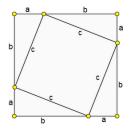
$$a^2 + b^2 = c^2.$$



Proof of the Pythagorean Theorem

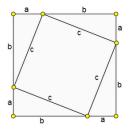
(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof of the Pythagorean Theorem



◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

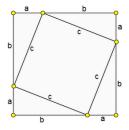
Proof of the Pythagorean Theorem



• Four (a, b, c) right triangles and one large $c \times c$ square.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof of the Pythagorean Theorem

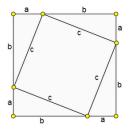


• Four (a, b, c) right triangles and one large $c \times c$ square.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

• This has area: $4 \cdot \frac{1}{2}ab + c^2 = 2ab + c^2$.

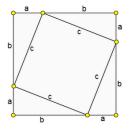
Proof of the Pythagorean Theorem



- Four (a, b, c) right triangles and one large $c \times c$ square.
- This has area: $4 \cdot \frac{1}{2}ab + c^2 = 2ab + c^2$.
- As one large square, it has area: $(a + b)^2 = a^2 + 2ab + b^2$.

(日) (雪) (日) (日) (日)

Proof of the Pythagorean Theorem



- Four (a, b, c) right triangles and one large $c \times c$ square.
- This has area: $4 \cdot \frac{1}{2}ab + c^2 = 2ab + c^2$.
- As one large square, it has area: $(a + b)^2 = a^2 + 2ab + b^2$.

•
$$\implies$$
 $c^2 = a^2 + b^2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Integers (a, b, c) form a **Pythagorean Triple** if a, b, c > 0 and

$$a^2 + b^2 = c^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Integers (a, b, c) form a **Pythagorean Triple** if a, b, c > 0 and

$$a^2+b^2=c^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moreover, it is called **primitive** if gcd(a, b, c) = 1.

Integers (a, b, c) form a **Pythagorean Triple** if a, b, c > 0 and

$$a^2+b^2=c^2.$$

Moreover, it is called **primitive** if gcd(a, b, c) = 1.

Example

The "first few" Pythagorean triples:

 $(3,4,5), (5,12,13), (2 \cdot 3, 2 \cdot 4, 2 \cdot 5), (7,24,25), (8,15,17), (3 \cdot 3, 3 \cdot 4, 3 \cdot 5) \dots$

Integers (a, b, c) form a **Pythagorean Triple** if a, b, c > 0 and

$$a^2+b^2=c^2.$$

Moreover, it is called **primitive** if gcd(a, b, c) = 1.

Example

The "first few" Pythagorean triples:

 $(3,4,5), (5,12,13), (2 \cdot 3, 2 \cdot 4, 2 \cdot 5), (7,24,25), (8,15,17), (3 \cdot 3, 3 \cdot 4, 3 \cdot 5) \dots$

The "first few" Primitive Pythagorean Triples:

 $(3,4,5), (5,12,13), (7,24,25), (8,15,17), (9,40,41), \ldots$

 $Pythagoras \implies$ \$1 million problem Pythagoras

Natural questions

Natural questions

Question

How many Pythagorean Triples exist?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Natural questions

Question

How many Pythagorean Triples exist?

Answer

Easy...infinitely many because of scaling.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Natural questions

Question

How many Pythagorean Triples exist?

Answer

Easy...infinitely many because of scaling.

Better Question How many Primitive Pythagorean Triples exist?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

 $Pythagoras \implies \$1 million problem$ Classifying Pythagorean Triples

Beautiful Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Pythagoras \implies \$1 million problem Classifying Pythagorean Triples

Beautiful Theorem

Theorem (Euclid)

Every PPT with odd a and even b is of the form

$$(a, b, c) = \left(st, \frac{s^2 - t^2}{2}, \frac{s^2 + t^2}{2}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

where $s > t \ge 1$ are odd coprime integers.

Pythagoras \implies \$1 million problem Classifying Pythagorean Triples

Beautiful Theorem

Theorem (Euclid)

Every PPT with odd a and even b is of the form

$$(a, b, c) = \left(st, \frac{s^2 - t^2}{2}, \frac{s^2 + t^2}{2}\right)$$

where $s > t \ge 1$ are odd coprime integers.

Example

This theorem is easy to use:

$$(s,t) = (17,5) \implies (a,b,c) = (85,132,157).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Connection to Unit Circle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

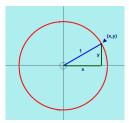
Connection to Unit Circle

$$a^2 + b^2 = c^2 \implies \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Connection to Unit Circle

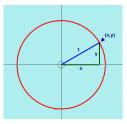
$$a^2 + b^2 = c^2 \implies \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$$



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Connection to Unit Circle

$$a^2 + b^2 = c^2 \implies \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$$



Question

How do we find all the **rational points** (i.e. x, y rational numbers) on the unit circle?

Sample points...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Sample points...

Obvious rational points on the unit circle:

 $(\pm 1, 0)$ and $(0, \pm 1)$.

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Sample points...

Obvious rational points on the unit circle:

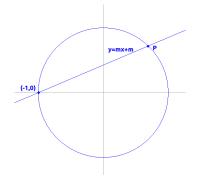
 $(\pm 1, 0)$ and $(0, \pm 1)$.

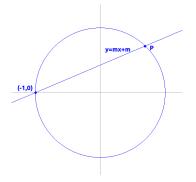
Some much less obvious points:

$$\left(-\frac{4}{5},\frac{3}{5}\right), \ \left(\frac{45}{53},\frac{28}{53}\right), \ \ldots, \ \left(\frac{231660}{245821},\frac{82229}{245821}\right),\ldots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

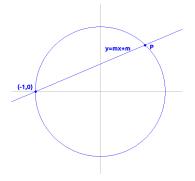
◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○





• Rational pts $P \neq (-1, 0)$ have lines with rational slopes m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



• Rational pts $P \neq (-1, 0)$ have lines with rational slopes m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• By substituting
$$y = mx + m$$
 into $x^2 + y^2 = 1$
 $\implies x^2 + (mx + m)^2 = 1.$

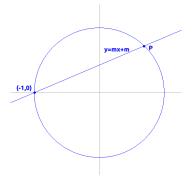


• Rational pts $P \neq (-1, 0)$ have lines with rational slopes m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• By substituting
$$y = mx + m$$
 into $x^2 + y^2 = 1$
 $\implies x^2 + (mx + m)^2 = 1.$

• One root is x = -1



• Rational pts $P \neq (-1, 0)$ have lines with rational slopes m.

• By substituting
$$y = mx + m$$
 into $x^2 + y^2 = 1$
 $\implies x^2 + (mx + m)^2 = 1.$

• One root is x = -1 and the other gives $P = \left(\frac{1-m^2}{m^2+1}, \frac{2m}{m^2+1}\right)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rational Points

Theorem (Chord Method)

The rational points on the unit circle are:

$$(-1,0)\cup\left\{\left(\frac{1-m^2}{m^2+1},\frac{2m}{m^2+1}\right) : m \text{ rational}\right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Rational Points

Theorem (Chord Method)

The rational points on the unit circle are:

$$(-1,0)\cup\left\{\left(\frac{1-m^2}{m^2+1},\frac{2m}{m^2+1}\right): m \text{ rational}\right\}.$$

Remark

By drawing and intersecting lines, we determined all the rational points from a single point (-1, 0).

Natural Questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Pythagoras \implies \$1 million problem Rational Points on the unit circle

Natural Questions

• Can one solve other *Diophantine* equations from a **finite seed set of points** by intersecting lines?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pythagoras \implies \$1 million problem Rational Points on the unit circle

Natural Questions

• Can one solve other *Diophantine* equations from a **finite seed set of points** by intersecting lines?

• How many points are needed for starters?

Pythagoras \implies \$1 million problem Rational Points on the unit circle

Natural Questions

• Can one solve other *Diophantine* equations from a **finite seed set of points** by intersecting lines?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- How many points are needed for starters?
- What if one cannot find any points to start with?

An ancient problem

Definition

An integer is **congruent** if it is the area of a right triangle with rational sidelengths.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

An ancient problem

Definition

An integer is **congruent** if it is the area of a right triangle with rational sidelengths.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Problem (Arab Scholars)

Classify all of the congruent numbers.

 $Pythagoras \implies \$1 million problem$ Congruent Numbers

Is this an easy problem?

Is this an easy problem?

Example

Here are some facts:

Is this an easy problem?

Example

Here are some facts:

• 6 is congruent thanks to (3, 4, 5).

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

Is this an easy problem?

Example

Here are some facts:

• 6 is congruent thanks to (3, 4, 5).

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

• 5 is congruent since

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to (3, 4, 5).
- 5 is congruent since

$$\left(\frac{3}{2}\right)^2 + \left(\frac{20}{3}\right)^2 = \left(\frac{41}{6}\right)^2$$
 and $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{20}{3} = 5.$

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to (3, 4, 5).
- 5 is congruent since

$$\left(\frac{3}{2}\right)^2 + \left(\frac{20}{3}\right)^2 = \left(\frac{41}{6}\right)^2$$
 and $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{20}{3} = 5.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

• 1 is not congruent because ???.

 $Pythagoras \implies \$1 million problem$ Congruent Numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Zagier's Example

Example

The number 157 is congruent, since it is the area of

 $\left(\frac{411340519227716149383203}{21666555693714761309610},\frac{680\cdots 540}{411\cdots 203},\frac{224\cdots 041}{891\cdots 830}\right).$

- ロ ト - 4 回 ト - 4 □ - 4

Zagier's Example

Example

The number 157 is congruent, since it is the area of

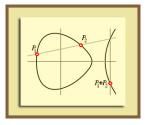
 $\left(\frac{411340519227716149383203}{21666555693714761309610},\frac{680\cdots 540}{411\cdots 203},\frac{224\cdots 041}{891\cdots 830}\right).$

Remark

The problem of classifying congruent numbers is probably hard.

< ロ ト < 団 ト < 三 ト < 三 ト の へ ()</p>

Another Chord Law



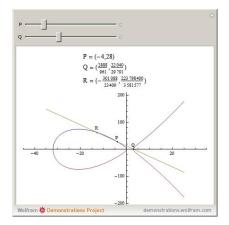
Group Law $E : y^2 = x^3 + Ax + B$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

 $\mathsf{Pythagoras} \Longrightarrow \ \$1 \ \mathrm{million} \ \mathrm{problem}$

Elliptic curves

Example $E: y^2 = x(x-3)(x+32)$

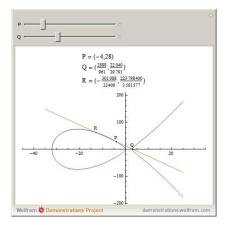


(ロト・日本)・モン・モン・モー のへの

 $\mathsf{Pythagoras} \Longrightarrow \ \$1 \ \mathrm{million} \ \mathrm{problem}$

Elliptic curves

Example $E: y^2 = x(x-3)(x+32)$



. 《 ㅁ ▶ 《 圊 ▶ 《 틸 ▶ 《 틸 ▶ / 틸 · 의익 ()

We find that $P + Q = \left(-\frac{301088}{23409}, -\frac{223798400}{3581577}\right)$.

 $Pythagoras \implies$ \$1 million problem Elliptic curves

Big theorems

(ロ)、(型)、(E)、(E)、 E、 の(の)

Big theorems

Theorem (Classical Fact)

The rational points on an elliptic curve form an abelian group.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

Big theorems

Theorem (Classical Fact)

The rational points on an elliptic curve form an abelian group.

Theorem (Mordell)

The rational points of an elliptic curve form a **finitely generated** abelian group.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Big theorems

Theorem (Classical Fact)

The rational points on an elliptic curve form an abelian group.

Theorem (Mordell)

The rational points of an elliptic curve form a **finitely generated** abelian group.

Question What kind of groups arise?

Examples of Groups of Rational Points

Examples of Groups of Rational Points

E	Group	# of Finite Pts
$y^2 = x(x-1)(x+1)$	$\mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/2\mathbb{Z}$	3
$y^2 = x^3 + 1$	$\mathbb{Z}/6\mathbb{Z}$	5
$y^2 = x^3 + 17$	$\mathbb{Z} imes \mathbb{Z}$	∞
$y^2 = x^3 + 17x + 10$	$\mathbb{Z}/1\mathbb{Z}$	0

A Classical Diophantine criterion

Pythagoras ⇒⇒ \$1 million problem Elliptic curves

A Classical Diophantine criterion

Theorem

An integer D is congruent if and only if the elliptic curve

$$E_D: \quad y^2 = x(x+D)(x-D)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

has infinitely many points.

 $Pythagoras \implies$ \$1 million problem Elliptic curves

Some data

Some data

Example

The first few congruent numbers:

 $5, 6, 7, 13, 14, 15, 20, 21, 22, 23, \ldots$

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Pythagoras \implies \$1 million problem Elliptic curves

Some data

Example

The first few congruent numbers:

```
5, 6, 7, 13, 14, 15, 20, 21, 22, 23, \ldots
```

The first few non-congruent numbers:

 $1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, \ldots$

Pythagoras \implies \$1 million problem Elliptic curves

Some data

Example

The first few congruent numbers:

 $5, 6, 7, 13, 14, 15, 20, 21, 22, 23, \ldots$

The first few non-congruent numbers:

 $1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, \ldots$

Conjecture

Half of the integers are congruent.

How do we make use of this criterion?

Pythagoras ⇒⇒ \$1 million problem Elliptic curves

How do we make use of this criterion?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Good question

How do we make use of this criterion?

Good question....a \$1 million question!

$\mathsf{Pythagoras} \Longrightarrow \ \$1 \ \mathrm{million} \ \mathrm{problem}$

<□ > < @ > < E > < E > E のQ @

\$1 million bounty

Definition (Trace mod p)

For primes p, let

$$a(p) := p - \#\{(x, y) \pmod{p} : y^2 \equiv x^3 - x \pmod{p}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Trace mod p)

For primes p, let

$$a(p) := p - \#\{(x, y) \pmod{p} : y^2 \equiv x^3 - x \pmod{p}\}.$$

Example

For p = 7 we have the 7 points mod 7:

 $\{(0,0), (1,0), (4,2), (4,5), (5,1), (5,6), (6,0)\}.$

・ロト・日本・日本・日本・日本・日本

Definition (Trace mod p)

For primes p, let

$$a(p) := p - \#\{(x, y) \pmod{p} : y^2 \equiv x^3 - x \pmod{p}\}.$$

Example

For p = 7 we have the 7 points mod 7:

 $\{(0,0),(1,0),(4,2),(4,5),(5,1),(5,6),(6,0)\}.$

$$\implies a(7)=7-7=0.$$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ④ ▲ ◎

Define integers A(n) by

$$\sum_{n=1}^{\infty} A(n) x^n := x \prod_{n=1}^{\infty} (1 - x^{4n})^2 (1 - x^{8n})^2 = x - 2x^5 - 3x^9 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define integers A(n) by

$$\sum_{n=1}^{\infty} A(n) x^n := x \prod_{n=1}^{\infty} (1 - x^{4n})^2 (1 - x^{8n})^2 = x - 2x^5 - 3x^9 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then for primes p we have:

Define integers A(n) by

$$\sum_{n=1}^{\infty} A(n)x^n := x \prod_{n=1}^{\infty} (1-x^{4n})^2 (1-x^{8n})^2 = x - 2x^5 - 3x^9 + \dots$$

Then for primes p we have:

р	3	5	7	11	13	17	19	23	•••	97
a(p)	0	-2	0	0	6	2	0	0	•••	18
A(p)	0	-2	0	0	6	2	0	0	•••	18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define integers A(n) by

$$\sum_{n=1}^{\infty} A(n)x^n := x \prod_{n=1}^{\infty} (1-x^{4n})^2 (1-x^{8n})^2 = x - 2x^5 - 3x^9 + \dots$$

Then for primes p we have:

р	3	5	7	11	13	17	19	23	•••	97
a(p)	0	-2	0	0	6	2	0	0	•••	18
A(p)	0	-2	0	0	6	2	0	0	•••	18

Theorem (Modularity) If p is prime, then A(p) = a(p).

The Hasse-Weil Function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The Hasse-Weil Function

For D, define the function

$$L(D,s) := \sum_{n=1}^{\infty} \frac{\left(\frac{D}{n}\right)A(n)}{n^s}.$$

Example

For D = 1, we find that

$$L(1,s)=0.65551\ldots$$

So what?

So what?

D	Congruent (Y/N)	L(D,1)
		/
5	Y	0
6	Y	0
7	Y	0
8	N	0.9270
9	N	0.6555
10	N	1.6583
11	N	0.7905
12	N	1.5138
13	Y	0
14	Y	0
15	Y	0

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/\mathbb{Q} is an elliptic curve and L(E, s) is its L-function, then

L(E,1) = 0 if and only if $\#E(\mathbb{Q}) = +\infty$.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/\mathbb{Q} is an elliptic curve and L(E,s) is its L-function, then

$$L(E,1) = 0$$
 if and only if $\#E(\mathbb{Q}) = +\infty$.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Corollary

Assuming BSD, D is congruent iff L(D, 1) = 0.

Kolyvagin's Theorem

Theorem (Kolyvagin)

If $L(E,1) \neq 0$, then $\#E(\mathbb{Q}) < +\infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kolyvagin's Theorem

Theorem (Kolyvagin) If $L(E, 1) \neq 0$, then $\#E(\mathbb{Q}) < +\infty$.

Remark

If $\operatorname{ord}_{s=1}(L(E, s)) \in \{0, 1\}$, then he proves that this order is the number of "generators".

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

A strange "criterion" using modularity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2 + y^2 + 32z^2 = D\} = \frac{1}{2} \cdot \#\{2x^2 + y^2 + 8z^2 = D\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2 + y^2 + 32z^2 = D\} = \frac{1}{2} \cdot \#\{2x^2 + y^2 + 8z^2 = D\}.$$

In particular, BSD implies that D is congruent iff we have equality.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2+y^2+32z^2=D\}=\frac{1}{2}\cdot\#\{2x^2+y^2+8z^2=D\}.$$

In particular, BSD implies that D is congruent iff we have equality.

Remark

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2+y^2+32z^2=D\}=\frac{1}{2}\cdot\#\{2x^2+y^2+8z^2=D\}.$$

In particular, BSD implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2+y^2+32z^2=D\}=\frac{1}{2}\cdot\#\{2x^2+y^2+8z^2=D\}.$$

In particular, BSD implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.

(2) By Kolyvagin, no equality \implies D is not congruent.

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

$$\#\{2x^2+y^2+32z^2=D\}=\frac{1}{2}\cdot\#\{2x^2+y^2+8z^2=D\}.$$

In particular, BSD implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.

(2) By Kolyvagin, no equality \implies D is not congruent.

(3) The converse may require solving the \$1 million problem.

Pythagoras ⇒ \$1 million problem In closing....

Some facts....

 $\begin{array}{l} {\sf Pythagoras} \Longrightarrow \ \$1 \ {\rm million \ problem} \\ {\sf In \ closing....} \end{array}$

Some facts....

• It is easy to classify Pythagorean Triples.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\begin{array}{l} {\sf Pythagoras} \Longrightarrow \ \$1 \ {\rm million \ problem} \\ {\sf In \ closing....} \end{array}$

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

 $\begin{array}{l} {\sf Pythagoras} \Longrightarrow \ \$1 \ {\rm million \ problem} \\ {\sf In \ closing....} \end{array}$

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.

- ロ ト - 4 回 ト - 4 □ - 4

• ...morphs into the "chord" law for elliptic curves.

 $\begin{array}{l} {\sf Pythagoras} \implies \$1 \ {\rm million \ problem} \\ {\sf In \ closing....} \end{array}$

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ...morphs into the "chord" law for elliptic curves.
- ...hard to classify congruent numbers.

 $\begin{array}{l} {\sf Pythagoras} \implies \$1 \ {\rm million \ problem} \\ {\sf In \ closing....} \end{array}$

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.

- ...morphs into the "chord" law for elliptic curves.
- ...hard to classify congruent numbers.
- If we could... maybe we'd win \$1 million!