Pythagoras $\Longrightarrow \$ 1$ million problem

Ken Ono
Emory University

The Pythagorean Theorem

Theorem (Pythagoras)
If (a, b, c) is a right triangle, then

$$
a^{2}+b^{2}=c^{2} .
$$

The Pythagorean Theorem

Theorem (Pythagoras)
If (a, b, c) is a right triangle, then

$$
a^{2}+b^{2}=c^{2} .
$$

Example

We have:

Proof of the Pythagorean Theorem

Proof of the Pythagorean Theorem

Proof of the Pythagorean Theorem

- Four (a, b, c) right triangles and one large $c \times c$ square.

Proof of the Pythagorean Theorem

- Four (a, b, c) right triangles and one large $c \times c$ square.
- This has area: $4 \cdot \frac{1}{2} a b+c^{2}=2 a b+c^{2}$.

Proof of the Pythagorean Theorem

- Four (a, b, c) right triangles and one large $c \times c$ square.
- This has area: $4 \cdot \frac{1}{2} a b+c^{2}=2 a b+c^{2}$.
- As one large square, it has area: $(a+b)^{2}=a^{2}+2 a b+b^{2}$.

Proof of the Pythagorean Theorem

- Four (a, b, c) right triangles and one large $c \times c$ square.
- This has area: $4 \cdot \frac{1}{2} a b+c^{2}=2 a b+c^{2}$.
- As one large square, it has area: $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
- $\Longrightarrow c^{2}=a^{2}+b^{2}$.

Definition

Integers (a, b, c) form a Pythagorean Triple if $a, b, c>0$ and

$$
a^{2}+b^{2}=c^{2} .
$$

Definition

Integers (a, b, c) form a Pythagorean Triple if $a, b, c>0$ and

$$
a^{2}+b^{2}=c^{2} .
$$

Moreover, it is called primitive if $\operatorname{gcd}(a, b, c)=1$.

Definition

Integers (a, b, c) form a Pythagorean Triple if $a, b, c>0$ and

$$
a^{2}+b^{2}=c^{2} .
$$

Moreover, it is called primitive if $\operatorname{gcd}(a, b, c)=1$.

Example

The "first few" Pythagorean triples:

$$
\begin{aligned}
& (3,4,5),(5,12,13),(2 \cdot 3,2 \cdot 4,2 \cdot 5),(7,24,25),(8,15,17) \\
& \quad(3 \cdot 3,3 \cdot 4,3 \cdot 5) \cdots
\end{aligned}
$$

Definition

Integers (a, b, c) form a Pythagorean Triple if $a, b, c>0$ and

$$
a^{2}+b^{2}=c^{2} .
$$

Moreover, it is called primitive if $\operatorname{gcd}(a, b, c)=1$.

Example

The "first few" Pythagorean triples:

$$
\begin{aligned}
& (3,4,5),(5,12,13),(2 \cdot 3,2 \cdot 4,2 \cdot 5),(7,24,25),(8,15,17) \\
& \quad(3 \cdot 3,3 \cdot 4,3 \cdot 5) \ldots
\end{aligned}
$$

The "first few" Primitive Pythagorean Triples:

$$
(3,4,5),(5,12,13),(7,24,25),(8,15,17),(9,40,41), \ldots
$$

Natural questions

Natural questions

Question
How many Pythagorean Triples exist?

Natural questions

Question
How many Pythagorean Triples exist?

Answer

Easy...infinitely many because of scaling.

Natural questions

Question
 How many Pythagorean Triples exist?

Answer

Easy...infinitely many because of scaling.

Better Question
 How many Primitive Pythagorean Triples exist?

Beautiful Theorem

Beautiful Theorem

Theorem (Euclid)
Every PPT with odd a and even b is of the form

$$
(a, b, c)=\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)
$$

where $s>t \geq 1$ are odd coprime integers.

Beautiful Theorem

Theorem (Euclid)

Every PPT with odd a and even b is of the form

$$
(a, b, c)=\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)
$$

where $s>t \geq 1$ are odd coprime integers.

Example

This theorem is easy to use:

$$
(s, t)=(17,5) \quad \Longrightarrow \quad(a, b, c)=(85,132,157)
$$

Connection to Unit Circle

Connection to Unit Circle

$$
a^{2}+b^{2}=c^{2} \quad \Longrightarrow \quad\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 .
$$

Connection to Unit Circle

$$
a^{2}+b^{2}=c^{2} \quad \Longrightarrow \quad\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 .
$$

Connection to Unit Circle

$$
a^{2}+b^{2}=c^{2} \quad \Longrightarrow \quad\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1
$$

Question

How do we find all the rational points (i.e. x, y rational numbers) on the unit circle?

Pythagoras $\Longrightarrow \$ 1$ million problem
Rational Points on the unit circle

Sample points...

Sample points...

Obvious rational points on the unit circle:

$$
(\pm 1,0) \quad \text { and } \quad(0, \pm 1)
$$

Sample points...

Obvious rational points on the unit circle:

$$
(\pm 1,0) \quad \text { and } \quad(0, \pm 1)
$$

Some much less obvious points:

$$
\left(-\frac{4}{5}, \frac{3}{5}\right),\left(\frac{45}{53}, \frac{28}{53}\right), \ldots,\left(\frac{231660}{245821}, \frac{82229}{245821}\right), \ldots
$$

- Rational pts $P \neq(-1,0)$ have lines with rational slopes m.

- Rational pts $P \neq(-1,0)$ have lines with rational slopes m.
- By substituting $y=m x+m$ into $x^{2}+y^{2}=1$
$\Longrightarrow x^{2}+(m x+m)^{2}=1$.

- Rational pts $P \neq(-1,0)$ have lines with rational slopes m.
- By substituting $y=m x+m$ into $x^{2}+y^{2}=1$
$\Longrightarrow x^{2}+(m x+m)^{2}=1$.
- One root is $x=-1$

- Rational pts $P \neq(-1,0)$ have lines with rational slopes m.
- By substituting $y=m x+m$ into $x^{2}+y^{2}=1$
$\Longrightarrow x^{2}+(m x+m)^{2}=1$.
- One root is $x=-1$ and the other gives $P=\left(\frac{1-m^{2}}{m^{2}+1}, \frac{2 m}{m^{2}+1}\right)$.

Rational Points

Theorem (Chord Method)
The rational points on the unit circle are:

$$
(-1,0) \cup\left\{\left(\frac{1-m^{2}}{m^{2}+1}, \frac{2 m}{m^{2}+1}\right): m \text { rational }\right\}
$$

Rational Points

Theorem (Chord Method)

The rational points on the unit circle are:

$$
(-1,0) \cup\left\{\left(\frac{1-m^{2}}{m^{2}+1}, \frac{2 m}{m^{2}+1}\right): m \text { rational }\right\}
$$

Remark

By drawing and intersecting lines, we determined all the rational points from a single point $(-1,0)$.

Natural Questions

Natural Questions

- Can one solve other Diophantine equations from a finite seed set of points by intersecting lines?

Natural Questions

- Can one solve other Diophantine equations from a finite seed set of points by intersecting lines?
- How many points are needed for starters?

Natural Questions

- Can one solve other Diophantine equations from a finite seed set of points by intersecting lines?
- How many points are needed for starters?
- What if one cannot find any points to start with?

An ancient problem

Definition

An integer is congruent if it is the area of a right triangle with rational sidelengths.

An ancient problem

Definition

An integer is congruent if it is the area of a right triangle with rational sidelengths.

Problem (Arab Scholars)
Classify all of the congruent numbers.

Is this an easy problem?

Is this an easy problem?

Example

Here are some facts:

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to $(3,4,5)$.

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to $(3,4,5)$.
- 5 is congruent since

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to $(3,4,5)$.
- 5 is congruent since

$$
\left(\frac{3}{2}\right)^{2}+\left(\frac{20}{3}\right)^{2}=\left(\frac{41}{6}\right)^{2} \quad \text { and } \quad \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{20}{3}=5
$$

Is this an easy problem?

Example

Here are some facts:

- 6 is congruent thanks to $(3,4,5)$.
- 5 is congruent since

$$
\left(\frac{3}{2}\right)^{2}+\left(\frac{20}{3}\right)^{2}=\left(\frac{41}{6}\right)^{2} \quad \text { and } \quad \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{20}{3}=5
$$

- 1 is not congruent because ???.

Zagier's Example

Zagier's Example

Example

The number 157 is congruent, since it is the area of

$$
\left(\frac{411340519227716149383203}{21666555693714761309610}, \frac{680 \cdots 540}{411 \cdots 203}, \frac{224 \cdots 041}{891 \cdots 830}\right) .
$$

Zagier's Example

Example

The number 157 is congruent, since it is the area of

$$
\left(\frac{411340519227716149383203}{21666555693714761309610}, \frac{680 \cdots 540}{411 \cdots 203}, \frac{224 \cdots 041}{891 \cdots 830}\right) .
$$

Remark

The problem of classifying congruent numbers is probably hard.

Another Chord Law

Group Law
$E: y^{2}=x^{3}+A x+B$

Pythagoras $\Longrightarrow \$ 1$ million problem
Elliptic curves

Example $E: y^{2}=x(x-3)(x+32)$

Example $E: y^{2}=x(x-3)(x+32)$

We find that $P+Q=\left(-\frac{301088}{23409},-\frac{223798400}{3581577}\right)$.

Pythagoras $\Longrightarrow \$ 1$ million problem
Elliptic curves

Big theorems

Big theorems

Theorem (Classical Fact)
The rational points on an elliptic curve form an abelian group.

Big theorems

Theorem (Classical Fact)
The rational points on an elliptic curve form an abelian group.

Theorem (Mordell)

The rational points of an elliptic curve form a finitely generated abelian group.

Big theorems

Theorem (Classical Fact)

The rational points on an elliptic curve form an abelian group.

Theorem (Mordell)

The rational points of an elliptic curve form a finitely generated abelian group.

Question

What kind of groups arise?

Examples of Groups of Rational Points

Examples of Groups of Rational Points

E	Group	\# of Finite Pts
$y^{2}=x(x-1)(x+1)$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	3
$y^{2}=x^{3}+1$	$\mathbb{Z} / 6 \mathbb{Z}$	5
$y^{2}=x^{3}+17$	$\mathbb{Z} \times \mathbb{Z}$	∞
$y^{2}=x^{3}+17 x+10$	\mathbb{Z} / \mathbb{Z}	0

A Classical Diophantine criterion

A Classical Diophantine criterion

Theorem

An integer D is congruent if and only if the elliptic curve

$$
E_{D}: \quad y^{2}=x(x+D)(x-D)
$$

has infinitely many points.

Pythagoras $\Longrightarrow \$ 1$ million problem
Elliptic curves

Some data

Some data

Example

The first few congruent numbers:

$$
5,6,7,13,14,15,20,21,22,23, \ldots
$$

Some data

Example

The first few congruent numbers:

$$
5,6,7,13,14,15,20,21,22,23, \ldots
$$

The first few non-congruent numbers:

$$
1,2,3,4,8,9,10,11,12,16,17,18,19, \ldots
$$

Some data

Example

The first few congruent numbers:

$$
5,6,7,13,14,15,20,21,22,23, \ldots
$$

The first few non-congruent numbers:

$$
1,2,3,4,8,9,10,11,12,16,17,18,19, \ldots
$$

Conjecture
 Half of the integers are congruent.

How do we make use of this criterion?

How do we make use of this criterion?

Good question....

How do we make use of this criterion?

Good question....a $\$ 1$ million question!

Pythagoras $\Longrightarrow \$ 1$ million problem
\$1 million bounty

Definition (Trace mod p)

For primes p, let

$$
a(p):=p-\#\left\{(x, y) \quad(\bmod p): y^{2} \equiv x^{3}-x \quad(\bmod p)\right\}
$$

Definition (Trace mod p)

For primes p, let

$$
a(p):=p-\#\left\{(x, y) \quad(\bmod p): y^{2} \equiv x^{3}-x \quad(\bmod p)\right\}
$$

Example

For $p=7$ we have the 7 points $\bmod 7$:

$$
\{(0,0),(1,0),(4,2),(4,5),(5,1),(5,6),(6,0)\}
$$

Definition (Trace mod p)

For primes p, let

$$
a(p):=p-\#\left\{(x, y) \quad(\bmod p): y^{2} \equiv x^{3}-x \quad(\bmod p)\right\}
$$

Example

For $p=7$ we have the 7 points $\bmod 7$:

$$
\begin{gathered}
\{(0,0),(1,0),(4,2),(4,5),(5,1),(5,6),(6,0)\} \\
\Longrightarrow \quad a(7)=7-7=0
\end{gathered}
$$

A very strange phenomenon

Define integers $A(n)$ by

$$
\sum_{n=1}^{\infty} A(n) x^{n}:=x \prod_{n=1}^{\infty}\left(1-x^{4 n}\right)^{2}\left(1-x^{8 n}\right)^{2}=x-2 x^{5}-3 x^{9}+\ldots .
$$

A very strange phenomenon

Define integers $A(n)$ by

$$
\sum_{n=1}^{\infty} A(n) x^{n}:=x \prod_{n=1}^{\infty}\left(1-x^{4 n}\right)^{2}\left(1-x^{8 n}\right)^{2}=x-2 x^{5}-3 x^{9}+\ldots .
$$

Then for primes p we have:

A very strange phenomenon

Define integers $A(n)$ by

$$
\sum_{n=1}^{\infty} A(n) x^{n}:=x \prod_{n=1}^{\infty}\left(1-x^{4 n}\right)^{2}\left(1-x^{8 n}\right)^{2}=x-2 x^{5}-3 x^{9}+\ldots
$$

Then for primes p we have:

p	3	5	7	11	13	17	19	23	\cdots	97
$a(p)$	0	-2	0	0	6	2	0	0	\cdots	18
$A(p)$	0	-2	0	0	6	2	0	0	\cdots	18

A very strange phenomenon

Define integers $A(n)$ by

$$
\sum_{n=1}^{\infty} A(n) x^{n}:=x \prod_{n=1}^{\infty}\left(1-x^{4 n}\right)^{2}\left(1-x^{8 n}\right)^{2}=x-2 x^{5}-3 x^{9}+\ldots
$$

Then for primes p we have:

p	3	5	7	11	13	17	19	23	\cdots	97
$a(p)$	0	-2	0	0	6	2	0	0	\cdots	18
$A(p)$	0	-2	0	0	6	2	0	0	\cdots	18

Theorem (Modularity)

If p is prime, then $A(p)=a(p)$.

The Hasse-Weil Function

The Hasse-Weil Function

For D, define the function

$$
L(D, s):=\sum_{n=1}^{\infty} \frac{\left(\frac{D}{n}\right) A(n)}{n^{s}} .
$$

Example

For $D=1$, we find that

$$
L(1, s)=0.65551 \ldots
$$

Pythagoras $\Longrightarrow \$ 1$ million problem \$1 million bounty

So what?

So what?

D	Congruent $(\mathrm{Y} / \mathrm{N})$	$L(D, 1)$
5	Y	0
6	Y	0
7	Y	0
8	N	$0.9270 \ldots$
9	N	$0.6555 \ldots$
10	N	$1.6583 \ldots$
11	N	$0.7905 \ldots$
12	N	$1.5138 \ldots$
13	Y	0
14	Y	0
15	Y	0

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E / \mathbb{Q} is an elliptic curve and $L(E, s)$ is its L-function, then

$$
L(E, 1)=0 \text { if and only if } \# E(\mathbb{Q})=+\infty .
$$

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E / \mathbb{Q} is an elliptic curve and $L(E, s)$ is its L-function, then

$$
L(E, 1)=0 \text { if and only if } \# E(\mathbb{Q})=+\infty .
$$

Corollary
Assuming BSD, D is congruent iff $L(D, 1)=0$.

Kolyvagin's Theorem

Theorem (Kolyvagin)
If $L(E, 1) \neq 0$, then $\# E(\mathbb{Q})<+\infty$.

Kolyvagin's Theorem

Theorem (Kolyvagin)
If $L(E, 1) \neq 0$, then $\# E(\mathbb{Q})<+\infty$.

Remark

If $\operatorname{ord}_{s=1}(L(E, s)) \in\{0,1\}$, then he proves that this order is the number of "generators".

A strange "criterion" using modularity

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

In particular, BSD implies that D is congruent iff we have equality.

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

In particular, $B S D$ implies that D is congruent iff we have equality.

Remark

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

In particular, BSD implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

In particular, $B S D$ implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.
(2) By Kolyvagin, no equality $\Longrightarrow D$ is not congruent.

A strange "criterion" using modularity

Theorem (Tunnell, 1983)
If D is odd and square-free, then $L(D, 1)=0$ if and only if

$$
\#\left\{2 x^{2}+y^{2}+32 z^{2}=D\right\}=\frac{1}{2} \cdot \#\left\{2 x^{2}+y^{2}+8 z^{2}=D\right\}
$$

In particular, $B S D$ implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.
(2) By Kolyvagin, no equality $\Longrightarrow D$ is not congruent.
(3) The converse may require solving the $\$ 1$ million problem.

Pythagoras $\Longrightarrow \$ 1$ million problem In closing.

Some facts....

Some facts....

- It is easy to classify Pythagorean Triples.

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.
- ...morphs into the "chord" law for elliptic curves.

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.
- ...morphs into the "chord" law for elliptic curves.
- ...hard to classify congruent numbers.

Some facts....

- It is easy to classify Pythagorean Triples.
- ...motivates using "chords" to study rational points.
- ...morphs into the "chord" law for elliptic curves.
- ...hard to classify congruent numbers.
- If we could... maybe we'd win $\$ 1$ million!

