A 125th birthday party...

Ken Ono
Emory University

Travel back in time...

Travel back in time...

1893: Chicago hosts the World's Fair!

Celebrating the state of the art in science and technology.

Visitors enjoyed

Visitors enjoyed

- The first Ferris wheel.

Visitors enjoyed

- The first Ferris wheel.
- Moving pictures.

Visitors enjoyed

- The first Ferris wheel.
- Moving pictures.

- Hershey's chocolate.

Visitors enjoyed

- The first Ferris wheel.

- Moving pictures.
- Hershey's chocolate.
- The first Congress of Mathematicians.

India and the 1893 World's Fair

India and the 1893 World's Fair

- There were no exhibits from India.

India and the 1893 World's Fair

- There were no exhibits from India.

- There were no talks by Indian mathematicians.

However, in South India. . .

... the incredible story of Srinivasa Ramanujan was beginning...

The legend. . .

The legend. . .

- Ramanujan was born in 1887.

The legend. . .

- Ramanujan was born in 1887.
- He was a Brahmin, a member of India's priestly caste.

The legend. . .

- Ramanujan was born in 1887.
- He was a Brahmin, a member of India's priestly caste.
- He was the son of a cloth merchant.

The legend. . .

- Ramanujan was born in 1887.
- He was a Brahmin, a member of India's priestly caste.
- He was the son of a cloth merchant.
- He was an excellent student, earning a scholarship to college.

A turning point

A turning point

- In college a friend introduced him to G. S. Carr's

Synopsis of elementary results in pure mathematics.

A turning point

- In college a friend introduced him to G. S. Carr's

Synopsis of elementary results in pure mathematics.
"the 'synopsis' it professes to be. It contains enunciations of 6165 theorems, systematically and quite scientifically arranged, with proofs which are often little more than cross-references..."

Ramanujan's new found infatuation.

Ramanujan's new found infatuation.

- Imitating Carr, he recorded his findings in notebooks...

Ramanujan's new found infatuation.

- Imitating Carr, he recorded his findings in notebooks...

$$
\begin{aligned}
& =x(1-x)+\left\{z d x=\frac{z}{f}(1+x)+\frac{2}{32}\left\{1-24\left(\frac{1}{e^{i q-1}}+\frac{z}{e^{2 x-1}}+2 x\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =z(1-x)+\frac{1}{2} \int z \alpha x=\frac{z}{3}(2-x)+\frac{1}{32}\left\{1-24\left(\frac{1}{e^{2}-1}+\frac{e^{i}(\bar{y}}{2}+2 x\right)\right\} \\
& \text { 3. Thipuimetici of an ellipse these eecenis eit is } h, \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left\{3(a+c)-\sqrt{\left(a+3()(3)^{2}+c\right)}\right\} \text { varly } \\
& =\pi(a+b)\left\{1+\frac{3 x}{10+\sqrt{4-3 x}}\right\} \text { veryovaly wher } x-\left(a-\frac{b}{a+b}\right)^{2} \\
& \text { dB. . } \pi=3.14159265-35.797 .9323846,26434 \\
& \text { ii. } \mathrm{Lg}_{\mathrm{g}} 10=2.3025850929,94005.684018 \text {. } \\
& \text { iii. } e^{-\pi}=.0482139182,6377225
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cr. } \pi=\frac{355}{153}\left(1-\frac{0003}{35-32}\right) \text { vary neaily } \\
& =\sqrt[4]{97 \frac{1}{2}-\frac{1}{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =y-4\left\{\log \left(-e^{-y}\right)-3 \log \left(1-e^{-3 y}\right)+s \log \left(1-e^{-r} y\right)-8 i\right\}
\end{aligned}
$$

Ramanujan's new found infatuation.

Ramanujan's new found infatuation.

- His findings came to him as visions from Goddess Namagiri.

Ramanujan's new found infatuation.

- His findings came to him as visions from Goddess Namagiri.

- He gave no proofs of any kind.

Ramanujan's new found infatuation.

- His findings came to him as visions from Goddess Namagiri.

- He gave no proofs of any kind.
- Ramanujan lost interest in everything but math.

Ramanujan's new found infatuation.

- His findings came to him as visions from Goddess Namagiri.

- He gave no proofs of any kind.
- Ramanujan lost interest in everything but math.

And he flunked out of college... Twice!

Mathematical Purgatory

Mathematical Purgatory

- To their credit, his parents continued to support him.

Mathematical Purgatory

- To their credit, his parents continued to support him.
- He found work as a clerk at the Madras Port Trust.

Mathematical Purgatory

- To their credit, his parents continued to support him.
- He found work as a clerk at the Madras Port Trust.
- He continued to work at his math, scribbling madly on a heavy slate and in his prized notebooks.

Letter to Hardy

- After years in isolation and seeking recognition,

Letter to Hardy

- After years in isolation and seeking recognition, he wrote

G. H. Hardy, Sadlierian Professor of Mathematics Cambridge University

Hardy invited Ramanujan to Cambridge.

Hardy invited Ramanujan to Cambridge.

- At first Ramanujan declined for religious reasons.

Hardy invited Ramanujan to Cambridge.

- At first Ramanujan declined for religious reasons.
- Visions from Goddess Namagiri granted him permission.

Ramanujan in England

Ramanujan in England

- He spent the next 5 years in England.

Ramanujan in England

- He spent the next 5 years in England.

Published over 30 papers:

- Prime numbers.
- Hypergeometric series.
- Elliptic functions.
- Partitions.
- Probabilistic Number Theory

Glory and Tragedy

Glory and Tragedy

- Elected Fellow of the Royal Society.

Glory and Tragedy

- Elected Fellow of the Royal Society.
- Hailed as a national hero in India.

Glory and Tragedy

- Elected Fellow of the Royal Society.
- Hailed as a national hero in India.
- Ramanujan achieved this despite the hardships of WWI.

Glory and Tragedy

- Elected Fellow of the Royal Society.
- Hailed as a national hero in India.
- Ramanujan achieved this despite the hardships of WWI.
- Ramanujan grew ill in 1919, and returned to India.

Glory and Tragedy

- Elected Fellow of the Royal Society.
- Hailed as a national hero in India.
- Ramanujan achieved this despite the hardships of WWI.
- Ramanujan grew ill in 1919, and returned to India.
- Ramanujan died in Madras on April 26, 1920.

Ramanujan's Legacy

Fields Medals have been awarded for solving his problems.

Ramanujan's Legacy

Fields Medals have been awarded for solving his problems.

- The proof of Fermat's Last Theorem.
- Ramanujan graphs
- "Circle method" in Analytic Number Theory.
- Probabilistic Number Theory

Ramanujan's Legacy

Fields Medals have been awarded for solving his problems.

- The proof of Fermat's Last Theorem.
- Ramanujan graphs
- "Circle method" in Analytic Number Theory.
- Probabilistic Number Theory
- and the list goes on and on...

Adding and Counting

Adding and Counting

Question. In how many ways can 4 be written as sum?

Adding and Counting

Question. In how many ways can 4 be written as sum?

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1,
$$

Adding and Counting

Question. In how many ways can 4 be written as sum?

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1,
$$

We say that $p(4)=5$.

The Partition function $p(n)$

Definition

A partition of an integer n is any nonincreasing sequence of positive integers which sum to n.

The Partition function $p(n)$

Definition

A partition of an integer n is any nonincreasing sequence of positive integers which sum to n.

Notation. The partition function

$$
p(n)=\text { Number of partitions of } n .
$$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=231$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=231$
- $p(32)=$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=231$
- $p(32)=8349$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=231$
- $p(32)=8349$
- $p(64)=$

Is there a simple formula for $p(n)$?

Here are some values of $p(n)$:

- $p(2)=2$
- $p(4)=5$
- $p(8)=22$
- $p(16)=231$
- $p(32)=8349$
- $p(64)=1741630$

Hardy-Ramanujan Formula

Hardy-Ramanujan Formula

Theorem (Hardy and Ramanujan)
We have that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{\frac{2 n}{3}}} .
$$

The size of $p(n)$
The Hardy-Ramanujan Formula

The Hardy-Ramanujan Formula

n
 $p(n)$

HR Formula
$\frac{p(n)}{\text { HR Formula }}$

The Hardy-Ramanujan Formula

n	$p(n)$	HR Formula	$\frac{p(n)}{\text { HR Formula }}$
10	42	$48.10 \ldots$	$0.87 \ldots$

The Hardy-Ramanujan Formula

n	$p(n)$	HR Formula	$\frac{p(n)}{\text { HR Formula }}$
10	42	$48.10 \ldots$	$0.87 \ldots$
20	627	$692.38 \ldots$	$0.90 \ldots$

The Hardy-Ramanujan Formula

n	$p(n)$	HR Formula	$\frac{p(n)}{\text { HR Formula }}$
10	42	$48.10 \ldots$	$0.87 \ldots$
20	627	$692.38 \ldots$	$0.90 \ldots$
\vdots	\vdots	\vdots	\vdots
100	$190,569,292$	$199,280,893.34 \ldots$	$0.95 \ldots$

The Hardy-Ramanujan Formula

n	$p(n)$	HR Formula	$\frac{p(n)}{\text { HR Formula }}$
10	42	$48.10 \ldots$	$0.87 \ldots$
20	627	$692.38 \ldots$	$0.90 \ldots$
\vdots	\vdots	\vdots	\vdots
100	$190,569,292$	$199,280,893.34 \ldots$	$0.95 \ldots$
\vdots	\vdots	\vdots	\vdots
100,000	Large $\#$	Large $\#$	$0.998 \ldots$

Divisibility of $p(n)$

The beginning of a pattern:

Divisibility of $p(n)$

The beginning of a pattern:

- $p(4)=5$

Divisibility of $p(n)$

The beginning of a pattern:

- $p(4)=5$
- $p(9)=30$

Divisibility of $p(n)$

The beginning of a pattern:

- $p(4)=5$
- $p(9)=30$
- $p(14)=135$

Divisibility of $p(n)$

The beginning of a pattern:

- $p(4)=5$
- $p(9)=30$
- $p(14)=135$
- $p(19)=490$
- $p(24)=1575$
- $p(29)=4565$
- $p(34)=12310$
- $\vdots \quad \vdots$

Does the pattern continue on and on?

Does the pattern continue on and on?

Theorem (Ramanujan)
For every n, we have

$$
p(5 n+4) \text { is a multiple of } 5 .
$$

Ramanujan's congruences

Theorem (Ramanujan)

For every n, we have that

$$
\begin{aligned}
& p(5 n+4) \text { is a multiple of } 5, \\
& p(7 n+5) \text { is a multiple of } 7, \\
& p(11 n+6) \text { is a multiple of } 11 .
\end{aligned}
$$

The "first digits" of $p(n)$
The function $f(n)$

The function $f(n)$

Definition

Define the "first digit" function $f(n)$ by

$$
f(n):=\text { "first digit of } p(n) "
$$

The function $f(n)$

Definition

Define the "first digit" function $f(n)$ by

$$
f(n):=\text { "first digit of } p(n) "
$$

For example, we have

$$
\begin{array}{ccc}
p(10)=42 & \longrightarrow f(10)=4, \\
p(20)=627 & \longrightarrow f(20)=6, \\
p(30)=5604 & \longrightarrow f(30)=5, \\
p(40)=37338 & \longrightarrow & f(40)=3 .
\end{array}
$$

The "first digits" of $p(n)$
A natural question.

A natural question.

Question

What is the "frequency" of the possible 9 values of $f(n)$?

A natural question.

Question

What is the "frequency" of the possible 9 values of $f(n)$?
For example, does each possible value occur with frequency $1 / 9$?

A natural question.

Question

What is the "frequency" of the possible 9 values of $f(n)$?
For example, does each possible value occur with frequency $1 / 9$?

Definition (Frequency Function)
If $b \in\{1,2, \ldots, 9\}$, then let

$$
F_{b}(X):=\text { Percentage of }\{n<X: f(n)=b\}
$$

The "first digits" of $p(n)$

Data (Percentages)

$$
\begin{array}{llllllllll}
X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}
\end{array}
$$

The "first digits" of $p(n)$

Data (Percentages)

$$
\begin{array}{llllllllll}
X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}
\end{array}
$$

10	40	20	20	0	10	0	10	0	0

The "first digits" of $p(n)$

Data (Percentages)

$\begin{array}{llllllllll}X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}\end{array}$

10	40	20	20	0	10	0	10	0	0
20	35	20	15	10	10	0	10	0	0

Data (Percentages)

$\begin{array}{llllllllll}X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}\end{array}$

10	40	20	20	0	10	0	10	0	0
20	35	20	15	10	10	0	10	0	0
\vdots									
100	33	16	14	9	7	6	7	5	3

Data (Percentages)

$\begin{array}{llllllllll}X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}\end{array}$

10	40	20	20	0	10	0	10	0	0
20	35	20	15	10	10	0	10	0	0
\vdots									
100	33	16	14	9	7	6	7	5	3
\vdots									
1000	30.6	17.6	12.7	9.4	7.6	6.8	5.7	5.2	4.4

Data (Percentages)

$\begin{array}{llllllllll}X & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9}\end{array}$

10	40	20	20	0	10	0	10	0	0
20	35	20	15	10	10	0	10	0	0
\vdots									
100	33	16	14	9	7	6	7	5	3

$\begin{array}{llllllllll}1000 & 30.6 & 17.6 & 12.7 & 9.4 & 7.6 & 6.8 & 5.7 & 5.2 & 4.4\end{array}$
$\begin{array}{llllllllll}2500 & 30.2 & 17.8 & 12.4 & 9.6 & 7.7 & 6.7 & 5.7 & 5.0 & 4.6\end{array}$

What is going on?

Question
Do we recognize the numbers

$$
30.2, \quad 17.8, \quad 12.4, \quad 9.6, \quad 7.7, \quad 6.7, \quad 5.7, \quad 5.0, \quad 4.6 ?
$$

The "first digits" of $p(n)$
The theorem

The theorem

Theorem (Anderson, Rolen, Stoehr) If $F_{b}:=\lim _{X \rightarrow+\infty} F_{b}(X)$, then

$$
F_{b}= \begin{cases}30.1 \% & \text { if } b=1, \\ 17.6 \% & \text { if } b=2, \\ 12.4 \% & \text { if } b=3, \\ 9.69 \% & \text { if } b=4, \\ 7.91 \% & \text { if } b=5, \\ 6.69 \% & \text { if } b=6, \\ 5.79 \% & \text { if } b=7, \\ 5.11 \% & \text { if } b=8, \\ 4.57 \% & \text { if } b=9 .\end{cases}
$$

Why is this theorem true?

$$
\begin{aligned}
\log _{10}(2)-0 & =0.3010 \ldots \\
\log _{10}(3)-\log _{10}(2) & =0.176 \ldots \\
\log _{10}(4)-\log _{10}(3) & =0.124 \ldots \\
\log _{10}(5)-\log _{10}(4) & =0.0969 \ldots \\
\log _{10}(6)-\log _{10}(5) & =0.0791 \ldots \\
\log _{10}(7)-\log _{10}(6) & =0.0669 \ldots \\
\log _{10}(8)-\log _{10}(7) & =0.0579 \ldots \\
\log _{10}(9)-\log _{10}(8) & =0.0511 \ldots \\
\log _{10}(10)-\log _{10}(9) & =0.0457 \ldots
\end{aligned}
$$

The "first digits" of $p(n)$
Why is this theorem true?

Why is this theorem true?

- Consider $p(32)=8349$.

Why is this theorem true?

- Consider $p(32)=8349$.
- Writing in scientific notation we get:

$$
p(32)=8.349 \times 10^{3} .
$$

Why is this theorem true?

- Consider $p(32)=8349$.
- Writing in scientific notation we get:

$$
p(32)=8.349 \times 10^{3} .
$$

- Therefore, we find that

$$
\log _{10}(p(32))=\log _{10}(8.349)+\log _{10}\left(10^{3}\right)=\log _{10}(8.349)+3
$$

Why is this theorem true?

- Consider $p(32)=8349$.
- Writing in scientific notation we get:

$$
p(32)=8.349 \times 10^{3} .
$$

- Therefore, we find that

$$
\log _{10}(p(32))=\log _{10}(8.349)+\log _{10}\left(10^{3}\right)=\log _{10}(8.349)+3
$$

- Ignore the 3 , and let $p^{*}(32)=\log _{10}(8.349)=0.9216 \ldots$.

The "first digits" of $p(n)$
Why is this theorem true?

Why is this theorem true?

- For every $p(n)$ we get $0<p^{*}(n)<1$.

Why is this theorem true?

- For every $p(n)$ we get $0<p^{*}(n)<1$.
- The first digit is 1 only when $p^{*}(n)<\log _{10}(2)=0.3010 \ldots$.

Why is this theorem true?

- For every $p(n)$ we get $0<p^{*}(n)<1$.
- The first digit is 1 only when $p^{*}(n)<\log _{10}(2)=0.3010 \ldots$.
- The first digit is 2 only when

$$
\log _{10}(2) \leq p^{*}(n)<\log _{10}(3)
$$

Why is this theorem true?

- For every $p(n)$ we get $0<p^{*}(n)<1$.
- The first digit is 1 only when $p^{*}(n)<\log _{10}(2)=0.3010 \ldots$.
- The first digit is 2 only when

$$
\log _{10}(2) \leq p^{*}(n)<\log _{10}(3)
$$

and so on...

The "first digits" of $p(n)$
Why is this theorem true?

Why is this theorem true?

- Notice the "uneven" plot of

$$
0, \log _{10}(2), \ldots, \log _{10}(9), 1
$$

Why is this theorem true?

- Notice the "uneven" plot of

$$
0, \log _{10}(2), \ldots, \log _{10}(9), 1
$$

Why is this theorem true?

- Notice the "uneven" plot of

$$
0, \log _{10}(2), \ldots, \log _{10}(9), 1
$$

- (Benford's Law): Imagine throwing "darts".

The "first digits" of $p(n)$
Why is this theorem true?

Why is this theorem true?

- Ramanujan's asymptotic gives precise information on $p(n)$, and consequently $p^{*}(n)$.

Why is this theorem true?

- Ramanujan's asymptotic gives precise information on $p(n)$, and consequently $p^{*}(n)$.
- Weyl gave a "randomness criterion", which we can now verify.

Ramanujan's Legacy for Adding and Counting

Ramanujan's Legacy for Adding and Counting

- The "size" and rapid growth of $p(n)$.

Ramanujan's Legacy for Adding and Counting

- The "size" and rapid growth of $p(n)$.
- The divisibility properties of $p(n)$.

Ramanujan's Legacy for Adding and Counting

- The "size" and rapid growth of $p(n)$.
- The divisibility properties of $p(n)$.
- The phenomenon of "first digits".

In conclusion.

Ramanujan: The Legend

Ramanujan: The Legend

- He arose from humble beginnings.

Ramanujan: The Legend

- He arose from humble beginnings.
- His ideas have shaped much of modern mathematics.

Ramanujan: The Legend

- He arose from humble beginnings.
- His ideas have shaped much of modern mathematics.

