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Limits

Recall that given a sequence (rn : n ∈ N) of real numbers, a
real number r is the limit of the sequence if for all ε > 0
there is nε such that |r − rn| < ε for all n ≥ nε.

Similarly, for any sequence (r̄n : n ∈ N) in Rn, a vector r̄ is
the limit of the sequence if for all ε > 0 there is nε such that
‖r̄ − r̄n‖ < ε for all n ≥ nε.

This can be generalized to any metric space, and in fact to
any topological space X: A point P ∈ X is a limit of the
sequence (Pn : n ∈ N) if for any neighbourhood O of P
there is nO ∈ N such that Pi ∈ O for all n ≥ nO.



Ultraproducts,
asymptotics,
and model

theory

F. O. Wagner
Lyon 1

Limits

Ultrafilters

Elements of
Model Theory

Ultraproducts

Łos’ Theorem

Compactness

Pseudo-
finiteness

Approximate
subgroups

Existence

However, not all sequences have a limit. For instance, the
sequence ( 1

n : n ∈ N) in (0,1] does not have a limit in (0,1].
Similarly, a sequence of rational numbers approaching π
does not have a limit in Q.
In the above examples it is easy just to add the limit point to
the ambient space. This is slightly more difficult for the
sequence (n : n ∈ N) in N (or R): One has to add a suitable
point at infinity. However, some sequences such as
((−1)n : n ∈ N) just do not have a limit.
To some extent this may be remedied via the notion of an
accumulation point: P is an accumulation point of the
sequence (Pn : n ∈ N) if any neighbourhood O of P
contains infinitely many points of the sequence.
However, we would like to have a method to somehow
choose a particular limit point.
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Ultrafilters

Let I be a set (of indices), for instance I = N. A non-empty
collection F of subsets of I is called a filter if it satisfies:

If X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F.
If X ∈ F and Y ∈ F, then X ∩ Y ∈ F.
∅ /∈ F.

It is an ultrafilter if in addition
For any X ⊆ I, either X ∈ F or I \ X ∈ F.

For instance, for any x ∈ I the collection

{X ⊆ I : x ∈ X}

forms an ultrafilter, the principal ultrafilter generated by x.
If I is infinite, then the collection of co-finite subsets of I
forms a filter, the Frechet filter on I.
It follows from the axiom of choice that every filter can be
completed to an ultrafilter. In fact, this condition is slightly
weaker than the axiom of choice.
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Limits along an ultrafilter

Now let X be a closed an bounded subset of Rn (or more
generally a compact Hausdorff topological space). Consider
a sequence (Pi : i ∈ I). Then any non-principal ultrafilter U
on I determines a unique point PU ∈ X such that for any
neighbourhood O of PU the set

{i ∈ I : Pi ∈ O}

is in U. This point is the limit of the sequence along U.

We now want to do such a limit construction not only for
points in a compact space, but for arbitrary mathematical
structures.
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Structures

A structure M is just a set M, its domain, together with
some functions {fMi : i ∈ I1} and some relations
{RM

i : i ∈ I2} of arbitrary finite arity.
The relations are supposed to include equality, although this
will not be mentioned explicitly.
We can also name some particular constants {cM

i : i ∈ I0},
although we shall be allowed to use any element of M as
parameter.
The set

L = {ci : i ∈ I0} ∪ {fi : i ∈ I1} ∪ {Ri : i ∈ I2}

of (symbols for the) functions, relations and constants forms
the language of the structure M.
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Structures

Examples

A graph 〈V ,E〉.
A partial order 〈X ,≤〉.
A group 〈G,1, ·,−1〉
An ordered field 〈K ,0,1,+,−, ·,≤〉.
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Formulas

Using parameters, variables, the functions and relations,
logical connectives ¬, ∧, ∨,→,↔
(negation, conjunction, disjunction, implication, equivalence)
and quantifiers ∀, ∃ (universal, existential),
we can build meaningful statements called formulas.

A formula without free variables is a sentence.

These formulas are interpreted in M in the natural way.

If ϕ(x̄) is a formula with free variables x̄ and m̄ a tuple of
elements of M of the same length, then ϕ(m̄) is a sentence,
canonically interpreted in M (and hence either true or false).

Note that we can only quantify over the elements of M.
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Examples

1 An equivalence relation.
∀x E(x , x).
∀x∀y (E(x , y)→ E(y , x)).
∀x∀y∀z ((E(x , y) ∧ E(y , z))→ E(x , z)).

2 A partial order.
∀x (x ≤ x).
∀x∀y ((x ≤ y ∧ y ≤ x)→ x = y).
∀x∀y∀z ((x ≤ y ∧ y ≤ z)→ x ≤ z).

3 A group.
∀x∀y∀z (x · y) · z = x · (y · z).
∀x (x · x−1 = 1 ∧ x−1 · x = 1)
∀x (x · 1 = x ∧ 1 · x = x)
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Examples

1 The sentence

∀x∀y∃z0 . . . ∃zn (x = z1 ∧ y = zn ∧
∧
i<n

E(zi , zi+1))

says that the graph is connected of diameter at most n.
2 The sentence

¬∃x0 . . . ∃xn
∧
i<n

xi < xi+1

signifies that the partial order has height n, i.e. there
are no chains of length n + 1.

3 The sentence
∀x x · x · · · x︸ ︷︷ ︸

n times

= 1

tells us that the group has exponent dividing n.
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However, in the previous sentences

∀x∀y∃z0 . . . ∃zn (x = z1 ∧ y = zn ∧
∧
i<n

E(zi , zi+1))

¬∃x0 . . . ∃xn
∧
i<n

xi < xi+1

∀x x · x · · · x︸ ︷︷ ︸
n times

= 1

we cannot quantify over n. In particular, we cannot easily
express that a graph is connected, that a partial order has
finite height, or that a group has finite exponent.
In fact, this is outright impossible, due to the so-called
compactness theorem.
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Finite products

Given two groups G1 and G2, we can form the direct product

G1 ×G2 = {(g,h) : g1 ∈ G1,g2 ∈ G2}
with group multiplication

(g1,g2) · (g′1,g′2) = (g1 · g′1,g2 · g′2).

It is again a group.
Similarly, for two rings R1 and R2, we can from the direct
product R1 × R2 where addition and multiplication is
componentwise. It is again a ring.
If R1 and R2 are fields, the direct product is not a field, but
only a ring.
We can divide out by a maximal ideal I and obtain a field
(R1 × R2)/I. If G1 and G2 are simple groups, we can divide
out by a maximal normal subgroup N and obtain a simple
group (G1 ×G2)/N. However, the resulting object will be
isomorphic to one of the coordinates.
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Infinite products

This is different if we consider an infinite product∏
i∈I

Gi = {(gi : i ∈ I) : gi ∈ Gi for all i ∈ I}

or ∏
i∈I

Ri = {(ri : i ∈ I) : ri ∈ Ri for all i ∈ I}

with componentwise additon and/or multiplication. We may
again divide out by a normal subgroup/maximal ideal, but
the properties of the resulting group/ring quotient will
depend heavily on the normal subgroup/ideal chosen, and it
is not onvious which one to choose to obtain a particular
property.
Moreover, we should like to form a product of arbitrary
structures, not just algebraic ones.
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Ultraproducts

Let {Mi : i ∈ I} be a family of structures in the same
language L, and U an ultrafilter on I.
The ultraproduct

∏
I Mi/U will be the following structure:

The domain of M is the product
∏

i∈I Mi modulo the
equivalence relation ∼ given by:

(ai : i ∈ I) ∼ (bi : i ∈ I) if and only if {i ∈ I : ai = bi} ∈ U.

The class of a tuple (ai : i ∈ I) modulo ∼ is denoted by [ai ]I .
For a constant symbol c ∈ L we interpret c in M by

cM = [cMi ]I .

For an n-ary function symbol f ∈ L we put

fM : ([a1
i ]I , . . . , [an

i ]I) 7→ [fMi (a1
i , . . . ,a

n
i )]I .

For an n-ary relation symbol R ∈ L we define RM as

{([a1
i ]I , . . . , [an

i ]I) ∈ Mn : {i ∈ I : (a1
i , . . . ,a

n
i ) ∈ RMi} ∈ U}.
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Of course, one has to check that ∼ is indeed an
equivalence relation, and that the functions fM and relations
RM are well-defined and do not depend on the
representative chosen for its argument. This follows easily
from the filter properties of U.

If U is the principal ultrafilter generated by i0, then
∏

I Mi/U
is canonically isomorphic to Mi0 .

If all Mi are equal, the diagonal map m 7→ [m]I gives a
canonical embedding of M0 into M.
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Łos’ Theorem

Let M =
∏

I Mi/U be the ultraproduct of a family (Mi : i ∈ I)
of L-structures modulo the ultrafilter U on I.
Consider a formula ϕ(x1, . . . , xn) with free variables
x1, . . . , xn, and an n-tuple ([m1

i ]I , . . . , [mn
i ]I) of elements of

M.

Theorem (Łos)

The sentence ϕ([m1
i ]I , . . . , [mn

i ]I) is true in M if and only if

{i ∈ I : ϕ(m1
i , . . . ,m

n
i ) is true in Mi} ∈ U.
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Corollaries

It follows that if (almost) all structures Mi have a property
expressible in the language L by a sentence or a collection
of sentences, then any ultraproduct

∏
I Mi/U again has this

property.
In particular, an ultraproduct of algebraically closed fields is
again an algebraically closed field, and an ultraproduct of
real closed fields is again real closed.
If mi and ni have distance i in the graph Mi , then [mi ]I and
[ni ]I have infinite distance in the graph

∏
I Mi/U ;

if gi has order i in the group Gi , then [hi ]I has infinite order
in the group

∏
I Gi/U (unless U is principal).

This shows that connectivity or finite exponent is not
expressible by a formula or a set of formulas (unless the
diameter or the exponent is bounded).
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The Compactness Theorem

The compactness theorem is the most fundamental
theorem in model theory and is used practically everywhere.

Let Φ be a collection of sentences.
We shall say that a structure M is a model of Φ if every
sentence of Φ is true in M.

Theorem (Compactness)

A collection Φ of sentences has a model if and only if every
finite subcollection has a model.

The direction from left to right is obvious.
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The Completeness Theorem

The semantic notion of model is related to the syntactic
notion of consistency via Gödel’s Completeness Theorem:

Theorem (Completeness)

Φ has a model if and only if Φ is consistent.

The Compactness Theorem is an easy consequence of the
Completeness Theorem:
If Φ has no model, then it is inconsistent and there is a proof
of inconsistency from Φ. This proof uses only finitely many
hypotheses Φ0 ⊆ Φ, so Φ0 is inconsistent and does not
have a model.
Conversely, the Completeness Theorem can be deduced
from the Compactness Theorem.
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Proof of the Compactness Theorem

Let I be the collection of finite subsets of Φ. By hypothesis,
for every i ∈ I there is a model Mi of i . Let F be the filter
generated by the sets

Ii = {j ∈ I : i ⊆ j}

for i ∈ I. Note that Ii ∩ Ij = Ii∪j , so this generates indeed a
filter. Let U be an ultrafilter extending F, and M =

∏
I Mi/U.

If ϕ ∈ Φ, then ϕ is true in Mi for all i ∈ I{ϕ}. Since
I{ϕ} ∈ F ⊆ U, by Łos’ Theorem ϕ is true in M.
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Examples

Let U be a non-principal ultrafilter on N. Put

N∗ =
∏
N

N/U.

This is a non-standard model of the natural numbers; an
element n∗ ∈ N∗ \ N is called a non-standard integer.
For instance, the element [n!]N is greater than every
(standard) integer, and divisible by all (standard) prime
numbers.
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Examples

Put R∗ =
∏

NR/U.
This is a non-standard model of the real numbers; an
element r∗ ∈ R∗ \ R is called a non-standard real.
For instance, the element ε = [ 1

n ]N is strictly positive but
smaller than 1

k for all (standard) k > 0, a so-called
infinitesimal element.
An element of R∗ is bounded if there is r ∈ R with |r∗| ≤ r ;
since R is complete, for every bounded non-standard real r∗

there is a unique standard real st(r∗) ∈ R infinitesimally
close to r∗. The map st is the standard part map.
A function f : R→ R gives rise to a function f ∗ : R∗ → R∗.
Then f is derivable at x if and only if

st
(

f ∗(x + ε)− f ∗(x)

ε

)
= f ′(x)

does not depend on the infinitesimal ε.
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Examples

Let Kp be an algebraically closed field of characteristic p, for
instance the algebraic closure of Z/pZ. If U is a
non-principal ultrafilter on the set P of primes, put

K =
∏
P

Kp/U.

This is an algebraically closed field of characteristic zero. If
all Kp are countable, K is of size continuum, and hence
isomorphic to the complex numbers C.
It follows that a sentence is true in C if and only if it is true in
all but finitely many Kp (transfer principle).
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Pseudo-finite structures

An L-structure M is pseudo-finite if it is infinite and satisfies
all sentences true in all finite L-structures.

Examples of such sentences:
An injective function from a set to itself is surjective.
A partially ordered set has minimal and maximal
elements.
A totally ordered set has a maximum and a minimum.

Theorem

A stucture is pseudo-finite if and only if it satisfies the same
sentences as some ultraproduct of finite structures.
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Pseudo-finite fields

The first use of pseudo-finiteness was in Ax’
characterization of the asymptotic theory of finite fields.

A field K of characteristic p is perfect if every element has a
(unique) p-th root.
K is pseudo-algebraically closed if every variety which is
irreducible over the algebraic closure K̃ has a K -rational
point.

Theorem (Ax)

A field K is pseudofinite if and only if it is perfect,
pseudo-algebraically closed, and has exactly one extension
of degree n for every n > 0.
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Internal sets

Given an ultraproduct M =
∏

I Mi/U, a subset A of M is
internal if it is of the form

∏
I Ai/U for some sequence of

subsets Ai ⊆ Mi .

Internal sets of R∗ and N∗ are one of the main tools of
non-standard analysis.
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Counting

If A is a pseudo-finite internal subset in an ultraproduct
M =

∏
I Mi/U, then the cardinality n(Ai) is finite for almost

all i . We define the non-standard cardinality of A to be the
non-standard integer

n∗(A) = [n(Ai)]I ∈ N∗ =
∏

I

N/U.

It quantifies the growth rate of (n(Ai) : i ∈ I).

The non-standard cardinality is invariant under internal
bijections: If σi : Ai → Bi is a bijection in Mi for all i ∈ I, then
σ =

∏
I σi/U : A→ B is a bijection in M preserving

cardinality.
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Measure

If M is an ultraproduct, an internal measure on M is a finitely
additive map from the collection of all internal subsets of M
to R≥0 ∪ {∞}, i.e. for all disjoint internal subsets A, B of M

µ(A ∪ B) = µ(A) + µ(B).

The union of a countable family of internal sets is in general
not internal, so we cannot ask for countable additivity.
Clearly for any pseudo-finite A, the map

µ(B) = st
(

n∗(B)

n∗(A)

)
is an internal measure on A with µ(A) = 1.
In particular, a pseudo-finite group is internally amenable.
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Approximate subgroups

Let G be a group. A subset A of G is symmetric if 1 ∈ A and
a ∈ A implies a−1 ∈ A. A symmetric subset A is a
k-approximate subgroup of G if

A2 = {a · a′ : a,a′ ∈ A}

is covered by k -left translates of A.
A subset is a 1-approximate subgroup if and only if it is a
real subgroup.
A d-dimensional symmetric arithmetic progession

{k1b1 + · · ·+ kdbd : −ni ≤ ki ≤ ni for 1 ≤ i ≤ d}

is a 2d -approximate subgroup. This can be generalized to
the nilpotent case, the so-called nilprogressions.
Breuillard, Green and Tao have recently classified finite
approximate subgroups. They show that they are essentially
an extension of a nilprogression by a real subgroup.
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Approximate subgroups

The classification theorem implies Gromov’s theorem on
groups of polynomial growth.

In fact, the proofs of either theorem proceed by first
constructing a homomorphism into a finite-dimensional real
Lie group. This homomorphism can be obtained via an
ultraproduct construction.
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One first considers a sequence (Gi ,Ai : i ∈ N) of
k -approximate subgroups with n(Ai)→∞.

If U is a non-principal ultrafilter on N, the ultraproduct
A =

∏
I Ai/U is a pseudo-finite k -approximate subgroup of

G =
∏

I Gi/U.

One then constructs of sequence (Xj : j ∈ N) of internal
symmetric subsets of A4 such that

(X 2
j+1)A ⊆ Xj

and µ(Xj) > 0 for all j ∈ N, where µ is the internal measure
normalized at A. Then N =

⋂
j∈N Xj is an actual normal

subgroup of 〈A〉.
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We can define a topology on 〈A〉/N whose closed sets are
those whose pre-image in 〈A〉 are the whole set, or
intersections of internal sets.

The condition that µ(Xj) > 0 for all j ∈ N yields that the
topology is locally compact. The characterization of locally
compact groups allows us to modify A and N slightly, so that
the locally compact quotient becomes a finite-dimensional
real Lie group.

Now pseudo-finiteness is used (in a highly non-trivial way)
to show that the Lie group is nilpotent, and A/N is a
non-standard nilprogression. Pulling back to the Ai yields
the result.
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Thank
You
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