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1. Notion of distributions

In order to build weak solutions to the Hopf equation, we need to define
derivatives of non smooth functions, typically of Heaviside functions. The
suitable tool to do that is Schwartz’ theory of distributions.

I Duality

The space of distributions is essentially the smaller space

• containing continuous functions,

• and stable by derivation.

To give a precise sense to this definition, we have to change our point of
view on functions. Instead of considering a function f : R→ R as the
collection of its values f (x) for all x ∈ R, we define f by its averages
against suitable test functions

∫
f (x)ϕ(x)dx .
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The class of test functions is D = C∞c (R), so that, for any ϕ ∈ D, one
can define

• infinitely many derivatives ;

• the integral against any continuous function.

Distributions are “continuous ” linear forms on D.

Any continuous function u can be identified as a distribution

Tu : ϕ ∈ D 7→ 〈Tu, ϕ〉 =

∫
ϕ(x)u(x)dx .

Results from integration theory guarantees that

u ∈ C 0(R) 7→ Tu ∈ D

is an injective mapping.
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I Derivation of distributions

Weak derivation has to correspond to classical derivation if relevant.
For any function u ∈ C 1(R), an integration by part shows that

〈T∂u, ϕ〉 =

∫
ϕ(x)u′(x)dx = −

∫
ϕ′(x)u(x)dx ,

since there is no contribution of the boundary terms.

By definition, the derivative ∂αT of order α of the distribution T is
therefore the distribution defined by

∀ϕ ∈ D, 〈∂αT , ϕ〉 def= (−1)α〈T , ∂αϕ〉 .

In particular, we define the “weak derivative” of a continuous function as
the derivative of the corresponding distribution.
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I Examples

• The Heaviside function is the function H defined on R by

H(x) = 0 if x ≤ 0, H(x) = 1 if x > 0.
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Fig. 1. The Heaviside function

It is of course C∞ on R+
∗ and on R−∗ , but has a jump at x = 0, so that it

is even not continuous....
It has nevertheless a weak derivative defined by

〈∂H, ϕ〉 = −
∫ +∞

−∞
H(x)ϕ′(x)dx = ϕ(0)
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• The Dirac mass is the distributional derivative of H
δ = ∂xH

It is NOT a function, but it can be approximated (as all distributions) by
sequences of functions, for instance 1

εψ
(
x
ε

)
where ψ is some smooth

function with compact support such that
∫
ψ(x)dx = 1.
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Fig. 2. Approximation of the Dirac mass∫
1

ε
ψ
(x
ε

)
ϕ(x)dx =

∫
ψ(y)ϕ(εy)dy = ϕ(0)+

∫
ψ(y) (ϕ(εy)− ϕ(0)) dy

tends indeed to ϕ(0) as ε→ 0 (since ϕ′ is uniformly bounded).
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2. Distributional solutions of the Hopf equation

I The unknown

We can now extend the notion of solution of a PDE by considering
derivatives in weak sense. This is actually a very standard tool for linear
PDEs.

But products of distribution are not defined in general !
δ is not a function, therefore δ2 does not make sense
H is not continuous at x = 0, therefore δH does not make sense

In order that the Hopf equation makes sense, we therefore require that
weak solutions are bounded functions.
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I The conservative form of the equation

For such functions, the equation in conservative form

∂tu +
1

2
∂xu

2 = 0

is well-defined.

Note that this is in general not the case of the transport equation

∂tu + u∂xu = 0.

Both formulations are not equivalent !

For the same reason, the conservation of entropy

1

2
∂tu

2 +
1

3
∂xu

3 = 0 ,

is not an equivalent formulation, and will not be satisfied in general for
weak solutions of the Hopf equation.
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I The integral formulation

We call solution in the sense of distributions of the Hopf equation any
function u ∈ L∞(R+ × R) (defined and bounded almost everywhere)
such that for all ϕ ∈ C∞c (R+ × R)∫∫ (

u∂tϕ+
1

2
u2∂xϕ

)
(t, x)dxdt = −

∫
u0ϕ|t=0dx .

Since distributions are defined by averages, changing the values of a
bounded function on a countable number of points does not modify the
corresponding distribution. This is why weak solutions are defined only
almost everywhere.

Note that test functions are compactly supported on R+ × R, so that
boundary terms appear in the integration by parts. The initial condition
is therefore encoded in the integral formulation.
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I Some solutions

Strong solutions obtained by the method of characteristics are
distributional solutions of the Hopf equation. For piecewise C 1 functions,
one can indeed justify the integration by parts∫∫

(u∂tϕ+
1

2
u2∂xϕ)dtdx = −

∫∫
(∂tu +

1

2
∂xu

2)ϕdtdx −
∫

uϕ(0, x)dx

= −
∫

u0ϕ(0, x)dx

Rarefaction waves are distributional solutions of the Hopf equation

u(t, x) = v
(x
t

)
with v(z) = max(ul ,min(z , ur )) .

The only additional difficulty here is the singularity at time 0, which can
be dealt with by approximation∫ +∞

ε

∫
(u∂tϕ+

1

2
u2∂xϕ)dtdx = −

∫
u(ε, x)ϕ(ε, x)dx

→ −
∫ 0

−∞
ulϕ(0, x)dx −

∫ +∞

0

urϕ(0, x)dx
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Shock waves are distributional solutions of the Hopf equation.

u(t, x) = v
(x
t

)
with v(z) = ul11z≤s + ur11z>s .

A straightforward computation indeed leads to∫∫
(u∂tϕ+

1

2
u2∂xϕ)dtdx

=

∫∫
x≤st

(ul∂tϕ+
1

2
u2l ∂xϕ)dtdx +

∫∫
x>st

(ur∂tϕ+
1

2
u2r ∂xϕ)dtdx

= −
∫
x>0

ulϕ
(x
s
, x
)
dx −

∫
x<0

ulϕ(0, x)dx +

∫
1

2

∫
u2l ϕ(t, st)dt

+

∫
x>0

urϕ
(x
s
, x
)
dx −

∫
x>0

urϕ(0, x)dx −
∫

1

2

∫
u2r ϕ(t, st)dt

=

∫ (
− s(ul − ur ) +

1

2
(u2l − u2r )

)
ϕ(t, st)dt −

∫
u0(x)ϕ(0, x)dx

The Hopf equation is then equivalent to the Rankine-Hugoniot jump
conditions giving the shock speed :

−s(ul − ur ) +
1

2
(u2l − u2r ) = 0 .



Solutions in the sense of distributions

3. About existence and uniqueness

I Global existence of solutions for bounded initial data

The existence of weak solutions to the Hopf equation does not result
from a general theorem (like the Cauchy-Lipschitz theorem for ODEs, or
some fixed point theorem). Weak solutions are built by approximation :

• Glimm’s approximation scheme described in the previous session
Discretization of the Hopf equation with respect to space and time,
and explicit resolution of the Riemann problem.

• Viscous approximation to be studied in the next parallel session
Smoothing of the Hopf equation by some viscous dissipation, and
explicit resolution of the heat equation.

• Kinetic formulation
Statistical description of the microscopic structure of the fluid, and
study of the relaxation process
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Proving the consistence of these approximations is not really difficult :
the approximate solution satisfies the Hopf equation up to a small
remainder.

The point is to get the convergence, i.e. the stability of the Hopf
equation : the approximate solution is close (at least in some weak sense)
to some true solution.

The difficulty comes from the nonlinearity. Weak convergence (which is
more or less some convergence in average) is not enough to describe the
asymptotic behaviour of nonlinear terms.

The main possible pathologies come from oscillations and
concentrations, which have to be excluded by additional a priori
estimates.
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I Non uniqueness

With that notion of solution, we have no more uniqueness !
Starting from instance of the Heaviside function u0 = H, we can check
that both functions u1 and u2 defined respectively by

u1(t, x) = H

(
x − 1

2
t

)
,

u2(t, x) =

 0 if x < 0
x
t if 0 < x < t
1 if x > t

are solutions in the sense of distributions of the Hopf equation, i.e.∫∫ (
u∂tϕ+

1

2
u2∂xϕ

)
dxdt = −

∫
u0(x)ϕ(0, x)dx .
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Fig. 3. Non uniqueness of distributional solutions

The Riemann problem with ul < ur is underdetermined. On can find at
least two weak solutions, a rarefaction wave and a shock wave.
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I Physical admissibility conditions

The shock wave can be discarded using

• Lax-Oleinik’s condition

t∂xu ≤ 1 in the sense of distributions;

• some entropy inequality, for instance

1

2
∂tu

2 +
1

3
∂xu

3 ≤ 0 in the sense of distributions;

• a causality principle : characteristics coming from the shock should
be traced back to the initial time.

These conditions are actually inherited from the microscopic structure
of shocks. Anyone of them ensures uniqueness of the solution starting
from any bounded initial data.
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