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If you find any mistakes, please email me. Also if after reading this you still can’t do the exer-
cises, email me too, and I will provide complete answers. This page will eventually contain a sketch
of the answers to exercise 3.

Recall the definition of the partition function :

p(n) = #{k1 ≥ · · · ≥ kl ≥ 1 : n = k1 + · · ·+ kl}.

So for instance p(4) = 4, because 4 = 4 = 3 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1. We now need to find
the generating function of p(n), which is by definition the following power series :

f(q) =
+∞∑
n=0

p(n)qn

Why would we be interested in such functions ? Because they often have nicer expressions, which
happen to be very handy. For p(n), we actually have the following formula :

+∞∑
n=0

p(n)qn =
+∞∏
n=1

1

1− qn
.

In order to prove this, we need the following : 1
1−x =

∑+∞
n=0 x

n. Now we can rewrite
∏+∞

n=1
1

1−qn as

+∞∏
n=1

1

1− qn
= (1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + q3 + q6 + · · · ) · · · .

So to find the coefficients of the power series development of this product, we have to count how
many times each qn appears as ta product. We want to show this number is p(n). The key is to
rewrite a partition of n as

n = 1 + · · ·+ 1︸ ︷︷ ︸
m1 times

+ 2 + · · ·+ 2︸ ︷︷ ︸
m2 times

+ · · ·+ k + · · ·+ k︸ ︷︷ ︸
mk times

= m1 · 1 + · · ·+ mk · k,

we associate to it the product of qm1 from the first sum, q2m2 from the second sum,..., qkmk from
the k’th sum, to get indeed qm1+2m2+···+kmk = qn. Check that this actually lists all the ways of
getting some qn.

1



Exercise 1. Prove that there are infinitely many n’s such that p(n) is even, and infinitely many
n’s such that p(n) is odd. You may use Euler’s recurrence (without proving it !) :

p(n) +
∞∑
k=1

(−1)k
[
p(n− k(3k + 1)

2
) + p(n− k(3k − 1)

2
)

]
= 0.

Remark that the infinite sum over the k’s is actually finite, as p(m) = 0 for m ≤ 0.

Sketch of the answer. This is a proof by contradiction, in the same spirit as Euclid’s proof
that there are infinitely many prime numbers. So suppose for instance that there are only finitely
many n’s such that p(n) is even. Let N be the greatest number for which p(N) is even. The key
thing is that the “gaps” between all the k(3k ± 1)/2 goes to infinity when k tends to infinity, in
particular there is k0 such that the gap is greater than N + 1 for k ≥ k0. Now for n >> N well
chosen (n− k0(3k0−1)

2
= N + 1 for instance), n− k(3k±1)

2
will never be in between 0 and N , by the

above formula p(n) is a sum of terms which are either (odd+odd) or 0, hence even. But then p(n)
is even, a contradiction as n > N .

And if there are finitely many n’s such that p(n) is odd, do almost the same trick by this time
finding n such that there will be a unique k ≥ k0 and such that n − k(3k + 1)/2 is in between 0
and N , and such that for this k, n − k(3k + 1)/2 = 1. Then show that for some n > N p(n) has
the parity of p(1) = 1, a contradiction.

Exercise 2. Show the following formula, which will be useful for exercise 3 :

∞∏
n=1

(1− qn)3 =
∞∑
k=0

(−1)k(2k + 1)q(k
2+k)/2.

You may use Jacobi’s triple product formula (still without proving it !) :

∞∏
n=1

(1− x2n)(1− x2n−1z)(1− x2n−1z−1) =
+∞∑

n=−∞

xn2

zn.

Sketch of the answer. The first thing you want to do to get some qn’s is to make the following
change of variables : x =

√
q and z = −√q, so that the expression on the left of Jacobi’s triple

product formula becomes
+∞∏
n=1

(1− qn)(1− qn)(1− qn−1).

Unfortunately as you can see when n = 1, we have the last term (1−q0) = 0, so the whole product
is null, and we are proving 0 = 0, which is not really deep. So we want to somehow remove that
term, and one way to do this is to still put x =

√
q, but let z vary for a while. We first get

+∞∏
n=1

(1− qn)(1 + qn−1/2z)(1 + qn−1/2z−1) =
+∞∑

n=−∞

qn
2/2zn.

Now we want to put the term which would cancel the product if z = −√q on the right side, so we
divide everything by (1 + q1/2z−1), which is (1 + qn−1/2z−1) for n = 1. Now the left term is

+∞∏
n=1

(1− qn)(1 + qn−1/2z)2,
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which tends to the promised
∏+∞

n=1(1 − qn)3 when z → −√q. Now use L’Hospital’s lemma. This
says if f and g are derivable functions such that f(x)→ 0 and g(x)→ 0 when x→ a, then

f(x)

g(x)
→ f ′(a)

g′(a)
,

whenever this last fraction makes sense.
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