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Pythagoras

The Pythagorean Theorem

Theorem (Pythagoras)

If (a, b, c) is a right triangle, then

a2 + b2 = c2.

Example

We have:
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Pythagoras

Proof of the Pythagorean Theorem

Four (a, b, c) right triangles and one large c × c square.

This has area: 4 · 1
2ab + c2 = 2ab + c2.

As one large square, it has area: (a + b)2 = a2 + 2ab + b2.

=⇒ c2 = a2 + b2.
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Pythagoras

Definition

Integers (a, b, c) form a Pythagorean Triple if a, b, c > 0 and

a2 + b2 = c2.

Moreover, it is called primitive if gcd(a, b, c) = 1.

Example

The “first few” Pythagorean triples:

(3, 4, 5), (5, 12, 13), (2 · 3,2 · 4, 2 · 5), (7, 24, 25), (8, 15, 17),

(3 · 3, 3 · 4, 3 · 5) . . .

The “first few” Primitive Pythagorean Triples:

(3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), . . .
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Pythagoras

Natural questions

Question

How many Pythagorean Triples exist?

Answer

Easy...infinitely many because of scaling.

Better Question

How many Primitive Pythagorean Triples exist?
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Classifying Pythagorean Triples

Beautiful Theorem

Theorem (Euclid)

Every PPT with odd a and even b is of the form

(a, b, c) =

(
st,

s2 − t2

2
,
s2 + t2

2

)
where s > t ≥ 1 are odd coprime integers.

Example

This theorem is easy to use:

(s, t) = (17, 5) =⇒ (a, b, c) = (85, 132, 157).
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Rational Points on the unit circle

Connection to Unit Circle

a2 + b2 = c2 =⇒
(

a
c

)2
+

(
b
c

)2
= 1.

Question

How do we find all the rational points (i.e. x , y rational numbers)
on the unit circle?
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Rational Points on the unit circle

Sample points...

Obvious rational points on the unit circle:

(±1, 0) and (0,±1).

Some much less obvious points:(
−4

5
,
3

5

)
,

(
45

53
,
28

53

)
, . . . ,

(
231660

245821
,

82229

245821

)
, . . .
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Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1 and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1 and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1 and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1 and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1

and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational pts P 6= (−1, 0) have lines with rational slopes m.

By substituting y = mx + m into x2 + y2 = 1
=⇒ x2 + (mx + m)2 = 1.

One root is x = −1 and the other gives P =
(

1−m2

m2+1
, 2m

m2+1

)
.



Pythagoras =⇒ $1 million problem

Rational Points on the unit circle

Rational Points

Theorem (Chord Method)

The rational points on the unit circle are:

(−1, 0) ∪
{(

1−m2

m2 + 1
,

2m

m2 + 1

)
: m rational

}
.

Remark

By drawing and intersecting lines, we determined all the rational
points from a single point (−1, 0).
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Rational Points on the unit circle

Natural Questions

Can one solve other Diophantine equations from a finite seed
set of points by intersecting lines?

How many points are needed for starters?

What if one cannot find any points to start with?
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Congruent Numbers

An ancient problem

Definition

An integer is congruent if it is the area of a right triangle with
rational sidelengths.

Problem (Arab Scholars)

Classify all of the congruent numbers.
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Congruent Numbers

Is this an easy problem?

Example

Here are some facts:

6 is congruent thanks to (3, 4, 5).

5 is congruent since(
3

2

)2

+

(
20

3

)2

=

(
41

6

)2

and
1

2
· 3

2
· 20

3
= 5.

1 is not congruent because ???.
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Congruent Numbers

Zagier’s Example

Example

The number 157 is congruent, since it is the area of(
411340519227716149383203

21666555693714761309610
,
680 · · · 540

411 · · · 203
,
224 · · · 041

891 · · · 830

)
.

Remark

The problem of classifying congruent numbers is probably hard.
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Elliptic curves

Another Chord Law

Group Law
E : y2 = x3 + Ax + B
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Elliptic curves

Example E : y 2 = x(x − 3)(x + 32)

We find that P + Q =
(
−301088

23409 ,−223798400
3581577

)
.
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Elliptic curves

Big theorems

Theorem (Classical Fact)

The rational points on an elliptic curve form an abelian group.

Theorem (Mordell)

The rational points of an elliptic curve form a finitely generated
abelian group.

Question

What kind of groups arise?
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Elliptic curves

Examples of Groups of Rational Points

E Group # of Finite Pts

y2 = x(x − 1)(x + 1) Z/2Z× Z/2Z 3

y2 = x3 + 1 Z/6Z 5

y2 = x3 + 17 Z× Z ∞

y2 = x3 + 17x + 10 Z/1Z 0
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Elliptic curves

A Classical Diophantine criterion

Theorem

An integer D is congruent if and only if the elliptic curve

ED : y2 = x(x + D)(x − D)

has infinitely many points.
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Elliptic curves

Some data

Example

The first few congruent numbers:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, . . . .

The first few non-congruent numbers:

1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, . . . .

Conjecture

Half of the integers are congruent.
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How do we make use of this criterion?

Good question....a $1 million question!
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$1 million bounty

Definition (Trace mod p)

For primes p, let

a(p) := p −#{(x , y) (mod p) : y2 ≡ x3 − x (mod p)}.

Example

For p = 7 we have the 7 points mod 7:

{(0, 0), (1, 0), (4, 2), (4, 5), (5, 1), (5, 6), (6, 0)}.

=⇒ a(7) = 7− 7 = 0.
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$1 million bounty

A very strange phenomenon

Define integers A(n) by

∞∑
n=1

A(n)xn := x
∞∏

n=1

(1− x4n)2(1− x8n)2 = x − 2x5 − 3x9 + . . . .

Then for primes p we have:

p 3 5 7 11 13 17 19 23 · · · 97

a(p) 0 −2 0 0 6 2 0 0 · · · 18
A(p) 0 −2 0 0 6 2 0 0 · · · 18

Theorem (Modularity)

If p is prime, then A(p) = a(p).
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The Hasse-Weil Function

For D, define the function

L(D, s) :=
∞∑

n=1

(
D
n

)
A(n)

ns
.

Example

For D = 1, we find that

L(1, s) = 0.65551 . . .
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So what?

D Congruent (Y/N) L(D, 1)

5 Y 0
6 Y 0
7 Y 0
8 N 0.9270 . . .
9 N 0.6555 . . .
10 N 1.6583 . . .
11 N 0.7905 . . .
12 N 1.5138 . . .
13 Y 0
14 Y 0
15 Y 0
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Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/Q is an elliptic curve and L(E , s) is its L-function, then

L(E , 1) = 0 if and only if #E (Q) = +∞.

Corollary

Assuming BSD, D is congruent iff L(D, 1) = 0.
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Kolyvagin’s Theorem

Theorem (Kolyvagin)

If L(E , 1) 6= 0, then #E (Q) < +∞.

Remark

If ords=1(L(E , s)) ∈ {0, 1}, then he proves that this order is the
number of “generators”.
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A strange “criterion” using modularity

Theorem (Tunnell, 1983)

If D is odd and square-free, then L(D, 1) = 0 if and only if

#{2x2 + y2 + 32z2 = D} =
1

2
·#{2x2 + y2 + 8z2 = D}.

In particular, BSD implies that D is congruent iff we have equality.

Remark

(1) There is a similar criterion for even square-free D.

(2) By Kolyvagin, no equality =⇒ D is not congruent.

(3) The converse may require solving the $1 million problem.
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In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!



Pythagoras =⇒ $1 million problem

In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!



Pythagoras =⇒ $1 million problem

In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!



Pythagoras =⇒ $1 million problem

In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!



Pythagoras =⇒ $1 million problem

In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!



Pythagoras =⇒ $1 million problem

In closing....

Some facts....

It is easy to classify Pythagorean Triples.

...motivates using “chords” to study rational points.

...morphs into the “chord” law for elliptic curves.

...hard to classify congruent numbers.

If we could... maybe we’d win $1 million!


	Pythagoras
	Classifying Pythagorean Triples
	Rational Points on the unit circle
	Congruent Numbers
	Elliptic curves
	$1 million bounty
	In closing....

