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Billiards in planar domains

The billiards table is a bounded open connected subset U ⊂ R2

with piecewise smooth boundary ∂U.

A particle runs straightforward at unit speed in U, bouncing
elastically on (the smooth part of) the boundary. The motion
stops if the particle hits a non regular point of the boundary.
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Some interesting tables
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Time averages of observables (Birkhoff averages)

Denote by q(t) = (x(t), y(t)) ∈ Ū be the position of the particle
at time t , by θ(t) ∈ R/2πZ its direction at a non-bouncing time t
(the angle being counted from the horizontal).

Given a ”nice” function ϕ(q, θ) on Ū × R/2πZ, we would like to
understand the behaviour of the Birkhoff averages

1
T

∫ T

0
ϕ(q(t), θ(t)) dt

as T becomes large, for every initial condition (q(0), θ(0)).
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Rational polygonal tables

We say that a billiards table U is polygonal if the boundary ∂U
is the union of finitely many line segments.

A polygonal billiards table is rational is any angle between the
segments in the boundary is a rational multiple of 2π.
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Some rational tables
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Billiards in a rectangular table

From now on, the table will be the rectangle U := (0,a)× (0,b).

Denote by θin, θout the directions of a trajectory just before and
just after a rebound on the boundary.
If the rebound occurs on the horizontal sides of U, one has
θout = −θin =: sh(θin).

If the rebound occurs on the vertical sides of U, one has
θout = π − θin =: sv (θin).
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From the rectangular table to the torus

Observe that sh, sv are commuting involutions of R/2πZ,
generating a group G isomorphic to the Klein group Z/2× Z/2.

The orbit of an element θ under G is {±θ, π ± θ}.
Thus, the direction along a given trajectory can take at most 4
distinct values.
Denote by Sh(x , y) = (x ,−y) and Sv (x , y) = (−x , y) the linear
symmetries of R2 associated to sh, sv , and by
SO(x , y) = (−x ,−y) the central symmetry equal to
Sh ◦ Sv = Sv ◦ Sh.
From the table U and its symmetric copies Sh(U), Sv (U),
SO(U), we construct a closed surface in the following way.
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U

Sh(U)

Sv(U)

SO(U)
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The torus Ta,b

For every g ∈ G = {id ,Sh,Sv ,SO}, we identify

I the upper side of g(U) with the lower side of Sh ◦ g(U);
I the lower side of g(U) with the upper side of Sh ◦ g(U);
I the right side of g(U) with the left side of Sv ◦ g(U);
I the left side of g(U) with the right side of Sv ◦ g(U).

Exercise: Prove that the space obtained in this way is naturally
identified with the quotient space Ta,b := R2/2aZ⊕ 2bZ.

Such a quotient of the plane by a lattice is called a
(2-dimensional) flat torus.
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Jean-Christophe Yoccoz Collège de France, PSL, Paris Translation surfaces and their geodesics (I)



The torus Ta,b

For every g ∈ G = {id ,Sh,Sv ,SO}, we identify
I the upper side of g(U) with the lower side of Sh ◦ g(U);
I the lower side of g(U) with the upper side of Sh ◦ g(U);
I the right side of g(U) with the left side of Sv ◦ g(U);

I the left side of g(U) with the right side of Sv ◦ g(U).

Exercise: Prove that the space obtained in this way is naturally
identified with the quotient space Ta,b := R2/2aZ⊕ 2bZ.

Such a quotient of the plane by a lattice is called a
(2-dimensional) flat torus.
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From billiards trajectories to linear flows on the torus
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Linear flows on tori

Given parameters ũ, ṽ ∈ R, one defines a flow (called a linear flow)
on Ta,b := R2/2aZ⊕ 2bZ by the formula

Φt
ũ,ṽ (x , y) = (x + t ũ, y + t ṽ).

It satisfies the flow property Φt+t′

ũ,ṽ = Φt
ũ,ṽ ◦ Φt′

ũ,ṽ .

Exercise: Let θ ∈ R/2πZ. Set ũ = cos θ, ṽ = sin θ. Check that the billiards
trajectory (x(t), y(t), θ(t)) with initial condition (x , y , θ) and the orbit
Φt

ũ,ṽ (x , y) are in correspondence in the following way

I when θ(t) = θ, Φt
ũ,ṽ (x , y) belongs to U and is equal to (x(t), y(t));

I when θ(t) = −θ, Φt
ũ,ṽ (x , y) belongs to Sh(U) and is equal to

Sh(x(t), y(t));
I when θ(t) = π − θ, Φt

ũ,ṽ (x , y) belongs to Sv (U) and is equal to
Sv (x(t), y(t));

I when θ(t) = π + θ, Φt
ũ,ṽ (x , y) belongs to SO(U) and is equal to

SO(x(t), y(t)).
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Jean-Christophe Yoccoz Collège de France, PSL, Paris Translation surfaces and their geodesics (I)



Linear flows on tori
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ũ,ṽ (x , y) belongs to U and is equal to (x(t), y(t));

I when θ(t) = −θ, Φt
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ũ,ṽ .
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Reduction to the standard torus

The standard torus is T2 := R2/Z2 and corresponds to the
case 2a = 2b = 1.

The map h(x , y) = ( x
2a ,

y
2b ) is a homeomorphism and a group

isomorphism from the torus Ta,b onto the standard torus.

For ũ, ṽ ∈ R, set u := ũ
2a , v := ṽ

2b . The map h conjugates the
flow Φt

ũ,ṽ on Ta,b to the flow Φt
u,v on T2

h ◦ Φt
ũ,ṽ = Φt

u,v ◦ h.

Thus, to study the billiards dynamics on a rectangular table, it is
sufficient to understand linear flows on the standard torus.

Jean-Christophe Yoccoz Collège de France, PSL, Paris Translation surfaces and their geodesics (I)



Reduction to the standard torus

The standard torus is T2 := R2/Z2 and corresponds to the
case 2a = 2b = 1.

The map h(x , y) = ( x
2a ,

y
2b ) is a homeomorphism and a group

isomorphism from the torus Ta,b onto the standard torus.
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2a , v := ṽ
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Linear flows on T2: the main dichotomy

Let (u, v) 6= (0,0) be parameters.

Theorem:
1. if u

v ∈ Q ∪ {∞}, every orbit of the flow Φt
u,v is periodic with

the same period T = T (u, v) : we have ΦT
u,v = idT2 and

thus Φt
u,v = Φt+T

u,v for all t ∈ R.
2. otherwise, every orbit of the flow is dense and even

equidistributed in T2: this means that, for any continuous
function ϕ on T2 and any initial condition (x0, y0) ∈ T2, we
have

lim
T→+∞

1
T

∫ T

0
ϕ(Φt

u,v (x0, y0)) dt =

∫
T2
ϕ(x , y) dx dy .
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Jean-Christophe Yoccoz Collège de France, PSL, Paris Translation surfaces and their geodesics (I)



Linear flows on T2: the main dichotomy

Let (u, v) 6= (0,0) be parameters.

Theorem:
1. if u

v ∈ Q ∪ {∞}, every orbit of the flow Φt
u,v is periodic with

the same period T = T (u, v) : we have ΦT
u,v = idT2 and

thus Φt
u,v = Φt+T

u,v for all t ∈ R.
2. otherwise, every orbit of the flow is dense and even

equidistributed in T2:

this means that, for any continuous
function ϕ on T2 and any initial condition (x0, y0) ∈ T2, we
have

lim
T→+∞

1
T

∫ T

0
ϕ(Φt

u,v (x0, y0)) dt =

∫
T2
ϕ(x , y) dx dy .
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The period in the rational case

In the case of rational slope, the period is equal to

I 1
|u| if v = 0;

I 1
|v | if u = 0;

I when u
v = p

q with integers p,q satisfying p ∧ q = 1, we
write u = wp, v = wq. The period is 1

|w | .
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Sketch of proof in the irrational case
In the case of irrational slope, one first observes that , when ϕ is a
trigonometric polynomial

ϕ(x , y) =
∑

|j|+|k|<N

ϕj,k exp 2πi(jx + ky),

one can write

ϕ(x , y) = ϕ0,0 + u
∂ψ

∂x
+ v

∂ψ

∂y
,

with ϕ0,0 =
∫
T2 ϕ(x , y) dx dy and

ψ(x , y) =
1

2πi

∑
(j,k)6=(0,0)

ϕj,k

ju + kv
exp 2πi(jx + ky).

It follows that

∫ T

0
ϕ(Φt

u,v (x0, y0)) dt = Tϕ0,0 +

∫ T

0

d
dt
ψ(Φt

u,v (x0, y0)) dt

= Tϕ0,0 + ψ(ΦT
u,v (x0, y0))− ψ(x0, y0).
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Thus, we have the estimate

| 1
T

∫ T

0
ϕ(Φt

u,v (x0, y0)) dt −
∫
T2
ϕ(x , y) dx dy | 6 2

T
max
T2
|ψ|,

which in this case is stronger than required by the theorem.

For a general continuous function ϕ on T2, one uses the case of trigonometric
polynomials and (a particular case of) Stone-Weierstrass theorem: any
continuous function can be uniformly approximated by a trigonometric
polynomial (details on blackboard if available; exercise otherwise ).
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Small divisors

Assume that α := u
v is irrational.

We have seen that any trigonometric polynomial ϕ of mean 0 can be written
as

ϕ = u
∂ψ

∂x
+ v

∂ψ

∂y
,

where ψ is another trigonometric polynomial. The coefficients of ϕ, ψ are
related by

ψj,k =
ϕj,k

2πi(ju + kv)
, (j , k) 6= (0, 0).

For a general smooth function ϕ of mean 0, we have an infinite Fourier
expansion

ϕ(x , y) =
∑

(j,k) 6=(0,0)

ϕj,k exp 2πi(jx + ky),

which allows to define the coefficients ψj,k as above, but the formal Fourier
series

∑
(j,k) 6=(0,0) ψj,k exp 2πi(jx + ky) does not always correspond to a true

function ψ!
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Diophantine numbers

Definition: An irrational number α is diophantine if there exists
τ ≥ 0, γ > 0, such that, for all (j , k) 6= (0,0) in Z2, one has

|jα + k | ≥ γ(|j |+ |k |)−1−τ .

An irrational number which is not diophantine is called a
Liouville number.
Almost all real numbers are (irrational and) diophantine.
Any irrational real algebraic number is diophantine: actually, it
satisfies the above condition for any τ > 0 (and appropriate
γ = γ(τ)) ; this is the content of Roth’s theorem..
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Birkhoff averages of smooth functions for diophantine
linear flows

Denote by C∞(T2) the set of continuous functions on T2 which have
continuous partial derivatives of any order.

A function ϕ belongs to C∞(T2) iff its Fourier coefficients ϕj,k satisfy:

∀N > 0, |ϕj,k | < (|j |+ |k |)−N ,

for |j |+ |k | large enough.

Thus, if α := u
v is diophantine and ϕ ∈ C∞(T2) has mean zero, one can write

ϕ = u
∂ψ

∂x
+ v

∂ψ

∂y
,

with ψ ∈ C∞(T2).

One has then

|
∫ T

0
ϕ(Φt

u,v (x0, y0)) dt | 6 2 max
T2
|ψ|.
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Summary

I Dichotomy between the rational case with periodic
trajectories and the irrational case with uniformly
distributed trajectories.

I In the diophantine irrational case, one has very good
estimates for the Birkhoff averages of smooth functions.
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Thanks for your attention
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