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Billiards in planar domains

The billiards table is a bounded open connected subset U C R?
with piecewise smooth boundary oU.
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Billiards in planar domains

The billiards table is a bounded open connected subset U C R?
with piecewise smooth boundary oU.

A particle runs straightforward at unit speed in U, bouncing
elastically on (the smooth part of) the boundary. The motion
stops if the particle hits a non regular point of the boundary.
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Some interesting tables
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Time averages of observables (Birkhoff averages)

Denote by q(t) = (x(t), ¥(t)) € U be the position of the particle
attime t, by 6(t) € R/2nZ its direction at a non-bouncing time t
(the angle being counted from the horizontal).

Jean-Christophe Yoccoz College de France, PSL, Paris Translation surfaces and their geodesics (1)



Time averages of observables (Birkhoff averages)

Denote by q(t) = (x(t), ¥(t)) € U be the position of the particle
attime t, by 6(t) € R/2nZ its direction at a non-bouncing time t
(the angle being counted from the horizontal).

Given a "nice” function ¢(q, #) on U x R/2xZ, we would like to
understand the behaviour of the Birkhoff averages

)
u /0 2(q(t).6(t)) ot

as T becomes large, for every initial condition (g(0), 6(0)).
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Rational polygonal tables

We say that a billiards table U is polygonal if the boundary oU
is the union of finitely many line segments.
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Rational polygonal tables

We say that a billiards table U is polygonal if the boundary oU
is the union of finitely many line segments.

A polygonal billiards table is rational is any angle between the
segments in the boundary is a rational multiple of 2x.
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Some rational tables
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Billiards in a rectangular table

From now on, the table will be the rectangle U := (0, a) x (0, b).
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Billiards in a rectangular table

From now on, the table will be the rectangle U := (0, a) x (0, b).

Denote by 0;,, 6out the directions of a trajectory just before and
just after a rebound on the boundary.
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Billiards in a rectangular table

From now on, the table will be the rectangle U := (0, a) x (0, b).

Denote by 6;,, 0,4 the directions of a trajectory just before and
just after a rebound on the boundary.

If the rebound occurs on the horizontal sides of U, one has
Oout = _gin = Sh(ein)-
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Billiards in a rectangular table

From now on, the table will be the rectangle U := (0, a) x (0, b).

Denote by 6;,, 0,4 the directions of a trajectory just before and
just after a rebound on the boundary.

If the rebound occurs on the horizontal sides of U, one has
eout _9/n - Sh

If the rebound occurs on the vertical sides of U, one has
Oout =™ — Oy =: sv
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From the rectangular table to the torus

Observe that sy, s, are commuting involutions of R/27Z,
generating a group G isomorphic to the Klein group Z/2 x Z/2.
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From the rectangular table to the torus

Observe that sy, s, are commuting involutions of R/27Z,
generating a group G isomorphic to the Klein group Z/2 x Z/2.
The orbit of an element § under Gis {£6,m + 0}.
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From the rectangular table to the torus

Observe that sy, s, are commuting involutions of R/27Z,
generating a group G isomorphic to the Klein group Z/2 x Z/2.
The orbit of an element § under Gis {£6,m + 0}.

Thus, the direction along a given trajectory can take at most 4
distinct values.
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From the rectangular table to the torus

Observe that sy, s, are commuting involutions of R/27Z,
generating a group G isomorphic to the Klein group Z/2 x Z/2.
The orbit of an element § under Gis {£6,m + 0}.

Thus, the direction along a given trajectory can take at most 4
distinct values.

Denote by Su(x,y) = (x,—y) and S,(x,y) = (—x, y) the linear
symmetries of R? associated to s, s, and by

So(x,y) = (—x, —y) the central symmetry equal to
ShOSV: SVOSh.
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From the rectangular table to the torus

Observe that sy, s, are commuting involutions of R/27Z,
generating a group G isomorphic to the Klein group Z/2 x Z/2.
The orbit of an element § under Gis {£6,m + 0}.

Thus, the direction along a given trajectory can take at most 4
distinct values.

Denote by Su(x,y) = (x,—y) and S,(x,y) = (—x, y) the linear
symmetries of R? associated to s, s, and by

So(x,y) = (—x, —y) the central symmetry equal to

ShOSV: SVOSh.

From the table U and its symmetric copies Sp(U), Sy(U),
So(U), we construct a closed surface in the following way.
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify
» the upper side of g(U) with the lower side of S, o g(U);
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify
» the upper side of g(U) with the lower side of S, o g(U);
» the lower side of g(U) with the upper side of S, o g(U);
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify
» the upper side of g(U) with the lower side of S, o g(U);
» the lower side of g(U) with the upper side of S, o g(U);
» the right side of g(U) with the left side of S, o g(U);
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify

» the upper side of g(U) with the lower side of S, o g(U);
the lower side of g(U) with the upper side of S, o g(U);
the right side of g(U) with the left side of S, o g(U);

the left side of g(U) with the right side of S, o g(U).

v

v

v
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The torus T,p

Forevery g € G = {id, Sy, Sy, Sp}, we identify

» the upper side of g(U) with the lower side of S, o g(U);
the lower side of g(U) with the upper side of S, o g(U);
the right side of g(U) with the left side of S, o g(U);
the left side of g(U) with the right side of S, o g(U).

v

v

v

Exercise: Prove that the space obtained in this way is naturally
identified with the quotient space T, := R2/2aZ & 2bZ.

Such a quotient of the plane by a lattice is called a
(2-dimensional) flat torus.
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From billiards trajectories to linear flows on the torus
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

isfi ot t
It satisfies the flow property 77 = & ;0 &7 5

u,v’
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

iofi ot t
It satisfies the flow property 777 = & ;0 & 5.
Exercise: Let 0 € R/27Z. Set U = cosd, v = sin@. Check that the billiards
trajectory (x(t), y(t), 0(t)) with initial condition (x, y, #) and the orbit
d>f~l,v(x, y) are in correspondence in the following way
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

iofi ot t
It satisfies the flow property 777 = & ;0 & 5.
Exercise: Let 0 € R/27Z. Set U = cosd, v = sin@. Check that the billiards
trajectory (x(t), y(t), 0(t)) with initial condition (x, y, #) and the orbit
d>f~l,v(x, y) are in correspondence in the following way

> when 0(t) =0, ¢f~1’7(x,y) belongs to U and is equal to (x(t), y(t));
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

iofi ot t
It satisfies the flow property 777 = & ;0 & 5.
Exercise: Let 0 € R/27Z. Set U = cosd, v = sin@. Check that the billiards
trajectory (x(t), y(t), 0(t)) with initial condition (x, y, #) and the orbit
d>f~l,v(x, y) are in correspondence in the following way

> when 0(t) =0, ¢f~1’7(x,y) belongs to U and is equal to (x(t), y(t));

> when 0(t) = -6, ¢f~,yv(x, y) belongs to S,(U) and is equal to
Sn(x(1), y(1));
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

’

t+t’
It satisfies the flow property o7 o ¢f7,7 o dL

u,v’

Exercise: Let 0 € R/27Z. Set U = cosd, v = sin@. Check that the billiards
trajectory (x(t), y(t), 0(t)) with initial condition (x, y, #) and the orbit
d>~~(x y) are in correspondence in the following way

> when 0(t) =0, %’V(x,y) belongs to U and is equal to (x(t), y(t));

> when 0(t) = -6, ¢f~,yv(x, y) belongs to S,(U) and is equal to
Sn(x(1), y(1));

> when d(t) =7 — 0, &L (X, y) belongs to S,(U) and is equal to
Su(x(1), y(1));
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Linear flows on tori

Given parameters u, v € R, one defines a flow (called a linear flow)
on T, := R?/2aZ @ 2bZ by the formula

L (X, y) = (x+ tu,y + tv).

’

t+t’
It satisfies the flow property o7 o ¢f7,7 o dL

u,v’

Exercise: Let 0 € R/27Z. Set U = cosd, v = sin@. Check that the billiards
trajectory (x(t), y(t), 0(t)) with initial condition (x, y, #) and the orbit
¢~~(x y) are in correspondence in the following way

> when 0(t) =0, %’V(x,y) belongs to U and is equal to (x(t), y(t));

> when 0(t) = -6, ¢f~,yv(x, y) belongs to S,(U) and is equal to
Sn(x(t), y(1));

> when d(t) =7 — 0, &L (X, y) belongs to S,(U) and is equal to
Sv(x(1), y(1));

> whend(t) =7 +0, ¢~~(x y) belongs to Sp(U) and is equal to
So(x(t), y(t))-
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Reduction to the standard torus

The standard torus is T? := R?/Z? and corresponds to the
case2a=2b=1.
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Reduction to the standard torus

The standard torus is T? := R?/Z? and corresponds to the
case2a=2b=1.

The map h(x, y) = (35, ﬁ) is a homeomorphism and a group
isomorphism from the torus T, onto the standard torus.
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Reduction to the standard torus

The standard torus is T? := R?/Z? and corresponds to the
case2a=2b=1.

The map h(x, y) = (35, ﬁ) is a homeomorphism and a group
isomorphism from the torus T, onto the standard torus.

For i,V € R, set u:= L v := L. The map h conjugates the
flow &L~ on T, to the flow ¢!, , on T2

ho Cbta’v = CDLN o h.
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Reduction to the standard torus

The standard torus is T? := R?/Z? and corresponds to the
case2a=2b=1.

The map h(x, y) = (35, ﬁ) is a homeomorphism and a group
isomorphism from the torus T, onto the standard torus.

For i,V € R, set u:= L v := L. The map h conjugates the
flow &L~ on T, to the flow ¢!, , on T2

ho Cbta’v = CDLN o h.

Thus, to study the billiards dynamics on a rectangular table, it is
sufficient to understand linear flows on the standard torus.
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Linear flows on T?: the main dichotomy

Let (u, v) # (0,0) be parameters.
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Linear flows on T?: the main dichotomy

Let (u, v) # (0,0) be parameters.

Theorem:
1. if £ € QU {oo}, every orbit of the flow @}, , is periodic with
the same period T = T(u, v) : we have ¢/ , = idg. and
thus @}, , = o4f] forall t € R.
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Linear flows on T?: the main dichotomy

Let (u, v) # (0,0) be parameters.

Theorem:

1. if £ € QU {oo}, every orbit of the flow @}, , is periodic with
the same period T = T(u, v) : we have ¢/ , = idg. and
thus @}, , = o4f] forall t € R.

2. otherwise, every orbit of the flow is dense and even
equidistributed in T?:
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Linear flows on T?: the main dichotomy

Let (u, v) # (0,0) be parameters.

Theorem:

1. if £ € QU {oo}, every orbit of the flow @}, , is periodic with
the same period T = T(u, v) : we have ¢/ , = idg. and
thus @}, , = o4f] forall t € R.

2. otherwise, every orbit of the flow is dense and even
equidistributed in T?: this means that, for any continuous

function ¢ on T2 and any initial condition (X, yo) € T?, we
have

. 1 [T
im / (!, (X0, y0)) it = / (X, y) dx dy.
T 0 ']1‘2

T—4oc0
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The period in the rational case

In the case of rational slope, the period is equal to
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The period in the rational case

In the case of rational slope, the period is equal to

1 .
> mlszO,
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The period in the rational case

In the case of rational slope, the period is equal to

1 .
> mlszO,

1 .
> mlfu:O,
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The period in the rational case

In the case of rational slope, the period is equal to

1 .
> mlszO,
» Lifu=0;

vl
» when ¥ = g with integers p, q satisfyingp A g =1, we

write u = wp, v = wq. The period is HW\

Translation surfaces and their geodesics (1)
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Sketch of proof in the irrational case

In the case of irrational slope, one first observes that , when ¢ is a
trigonometric polynomial

e(x.y)= > @ixexp2ri(x + ky),

lil+1kI<N
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Sketch of proof in the irrational case

In the case of irrational slope, one first observes that , when ¢ is a
trigonometric polynomial

e(x,y)= > pjxexp2ri(jx + ky),
lil+kI<N

one can write

(x,y) = +u—+v%
pxy %0,0 Ox ay’

with o0 = [2 ¢(x, y) dx dy and

_ 1 ©j k L
vxy) =5 ) k);) ik exp 2i(jx + k).
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Sketch of proof in the irrational case

In the case of irrational slope, one first observes that , when ¢ is a
trigonometric polynomial

e(x,y)= > pjxexp2ri(jx + ky),
ljil+1kI<N
one can write

(x,y) = +u—+v%
pxy %0,0 Ox ay’

with o0 = [2 ¢(x, y) dx dy and

_ 1 ©j k L
vxy) =5 ) k);) ik exp 2i(jx + k).

It follows that

T T
d
| e@lutase)dt = Tena+ [ Sulel o) ot
0 0

Two,0 +(Py (X, ¥0)) — (X0, Yo)-
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Thus, we have the estimate

Y,

17 2
7 etebuto) dt— [ oxy)dxdy] < 7 max
0 T2 T2
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Thus, we have the estimate

107 2 ‘
7| etebutoe) dt— [ oxy)dxdy] < 7 max(u
0 T2 T2

which in this case is stronger than required by the theorem.
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Thus, we have the estimate
1 2 e
= [ e(Puy(xo,Y0)) dt — | o(x,y)dxdy| < = max|y|,
T /o T2 T 12

which in this case is stronger than required by the theorem.
For a general continuous function ¢ on T2, one uses the case of trigonometric
polynomials and (a particular case of) Stone-Weierstrass theorem: any
continuous function can be uniformly approximated by a trigonometric
polynomial (details on blackboard if available; exercise otherwise ).

Translation surfaces and their geodesics (1)
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Small divisors

Assume that o := | is irrational.
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Small divisors

Assume that o := | is irrational.

We have seen that any trigonometric polynomial ¢ of mean 0 can be written
as

where v is another trigonometric polynomial.

Jean-Christop 'occoz College de France, PSL. i i urfaces and their geodesics (I)



Small divisors

Assume that o := | is irrational.

We have seen that any trigonometric polynomial ¢ of mean 0 can be written
as

v ox oy’
where v is another trigonometric polynomial. The coefficients of ¢, ¢ are
related by

_ Pj,k .
Qpl',k == m» (lvk) 7é (070)

Jean-Christophe Yoccoz Collége de France, PSL, Paris Translation surfaces and their geodesics (1)



Small divisors

Assume that o := | is irrational.

We have seen that any trigonometric polynomial ¢ of mean 0 can be written
as

where v is another trigonometric polynomial. The coefficients of ¢, ¢ are
related by

_ Pj,k .
Qpl',k == m» (lvk) 7é (070)

For a general smooth function ¢ of mean 0, we have an infinite Fourier
expansion
e(x,y)= > pixexp2mi(ix + ky),
(/,k)#(0,0)
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Small divisors

Assume that o := | is irrational.

We have seen that any trigonometric polynomial ¢ of mean 0 can be written
as

where v is another trigonometric polynomial. The coefficients of ¢, ¢ are
related by

_ Pj,k .
Qpl',k == m» (lvk) 7é (070)

For a general smooth function ¢ of mean 0, we have an infinite Fourier
expansion

e(x,y)= > pixexp2mi(ix + ky),
(j,K)#(0,0)
which allows to define the coefficients 1); x as above,
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Small divisors

Assume that o := | is irrational.

We have seen that any trigonometric polynomial ¢ of mean 0 can be written
as

p=uzl vl
where v is another trigonometric polynomial. The coefficients of ¢, ¢ are

related by

_ Pj,k .
Qpl',k == m» (lvk) 7é (070)

For a general smooth function ¢ of mean 0, we have an infinite Fourier
expansion

e(x,y)= > pixexp2mi(ix + ky),
(j,K)#(0,0)
which allows to define the coefficients 1); x as above, but the formal Fourier
series Z(j,k)#(0,0) .« exp 2mi(jx + ky) does not always correspond to a true
function !
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Diophantine numbers

Definition: An irrational number « is diophantine if there exists
7 >0, v > 0, such that, for all (j, k) # (0, 0) in Z2, one has

e+ k| = A(If] + k)T
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Diophantine numbers

Definition: An irrational number « is diophantine if there exists
7 >0, v > 0, such that, for all (j, k) # (0, 0) in Z2, one has

e+ k| = A(If] + k)T

An irrational number which is not diophantine is called a
Liouville number.
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Diophantine numbers

Definition: An irrational number « is diophantine if there exists
7 >0, v > 0, such that, for all (j, k) # (0, 0) in Z2, one has

e+ k| = A(If] + k)T

An irrational number which is not diophantine is called a
Liouville number.

Almost all real numbers are (irrational and) diophantine.
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Diophantine numbers

Definition: An irrational number « is diophantine if there exists
>0, > 0, such that, for all (j, k) # (0,0) in Z2, one has

e+ k| = A(If] + k)T

An irrational number which is not diophantine is called a
Liouville number.

Almost all real numbers are (irrational and) diophantine.

Any irrational real algebraic number is diophantine: actually, it
satisfies the above condition for any = > 0 (and appropriate
~v = (7)) ; this is the content of Roth’s theorem..
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Birkhoff averages of smooth functions for diophantine

linear flows

Denote by C>(T?) the set of continuous functions on T2 which have
continuous partial derivatives of any order.
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Birkhoff averages of smooth functions for diophantine

linear flows

Denote by C>(T?) the set of continuous functions on T2 which have
continuous partial derivatives of any order.

A function ¢ belongs to C>(T?) iff its Fourier coefficients ; x satisfy:
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Birkhoff averages of smooth functions for diophantine

linear flows

Denote by C>(T?) the set of continuous functions on T2 which have
continuous partial derivatives of any order.
A function ¢ belongs to C>(T?) iff its Fourier coefficients ; x satisfy:

YN >0, gl < (il + k)",

for |j| + | k| large enough.

Jean-Christophe Yoccoz Collége de France, PSL, Paris Translation surfaces and their geodesics (1)



Birkhoff averages of smooth functions for diophantine

linear flows

Denote by C>(T?) the set of continuous functions on T2 which have
continuous partial derivatives of any order.

A function ¢ belongs to C>(T?) iff its Fourier coefficients ; x satisfy:

YN >0, gl < (il + k)",

for |j| + | k| large enough.
Thus, if o := ¢ is diophantine and ¢ € C>(T?) has mean zero, one can write

_ o0 oy
¢7u8x+v(‘3y’

with ¢ € C>(T?).
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Birkhoff averages of smooth functions for diophantine

linear flows

Denote by C>(T?) the set of continuous functions on T2 which have
continuous partial derivatives of any order.

A function ¢ belongs to C>(T?) iff its Fourier coefficients ; x satisfy:

YN >0, gl < (il + k)",

for |j| + | k| large enough.
Thus, if o := ¢ is diophantine and ¢ € C>(T?) has mean zero, one can write

_ o0 oy
¢7u8x+v(‘3y’

with ¢ € C>(T?).
One has then

:
[ @) ] < 2max .
J0
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Summary
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» Dichotomy between the rational case with periodic
trajectories
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» Dichotomy between the rational case with periodic
trajectories and the irrational case with uniformly
distributed trajectories.
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» Dichotomy between the rational case with periodic
trajectories and the irrational case with uniformly
distributed trajectories.

» In the diophantine irrational case, one has very good
estimates for the Birkhoff averages of smooth functions.
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Thanks for your attention
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