Zero localization: from 17th-century algebra to challenges of today

Olga Holtz

UC Berkeley \& TU Berlin

Bremen summer school
July 2013

Descartes' rule of signs

Theorem [Descartes].

René Descartes

The number of positive zeros of a real univariate polynomial does not exceed the number of sign changes in its sequence of coefficients. Moreover, it has the same parity.

Theorem Sturm]
The number of zeros of a real univariate polynomial p on the interval $(a, b]$ is given $b y$ $V(a)-V(b)$, with $V()$ the number of sign changes in its Sturm sequence p, p_{1}, p_{2}

Descartes' rule of signs

Theorem [Descartes].

The number of positive zeros of a real univariate polynomial does not exceed the number of sign changes in its sequence of coefficients. Moreover, it has the same parity.

Theorem [Sturm].

The number of zeros of a real univariate polynomial p on the interval $(a, b]$ is given by $V(a)-V(b)$, with $V()$ the number of sign changes in its Sturm sequence p, p_{1}, p_{2}, \ldots.

Euclidean algorithm and continued fractions

Starting from $f_{0}:=p, f_{1}:=q-\left(b_{0} / a_{0}\right) p$, form the Euclidean algorithm sequence

$$
f_{j-1}=q_{j} f_{j}+f_{j+1}, \quad j=1, \ldots, k, \quad f_{k+1}=0 .
$$

Then f_{k} is the greatest common divisor of p and q.
This gives a continued fraction representation

Euclidean algorithm and continued fractions

Starting from $f_{0}:=p, f_{1}:=q-\left(b_{0} / a_{0}\right) p$, form the Euclidean algorithm sequence

$$
f_{j-1}=q_{j} f_{j}+f_{j+1}, \quad j=1, \ldots, k, \quad f_{k+1}=0
$$

Then f_{k} is the greatest common divisor of p and q. This gives a continued fraction representation

$$
R(z)=\frac{f_{1}(z)}{f_{0}(z)}=\frac{1}{q_{1}(z)+\frac{1}{q_{2}(z)+\frac{1}{q_{3}(z)+\frac{1}{\ddots \cdot+\frac{1}{q_{k}(z)}}}}}
$$

Generalized Jacobi matrices

$$
\mathcal{J}(z):=\left[\begin{array}{cccccc}
q_{k}(z) & -1 & 0 & \cdots & 0 & 0 \\
1 & q_{k-1}(z) & -1 & \cdots & 0 & 0 \\
0 & 1 & q_{k-2}(z) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{2}(z) & -1 \\
0 & 0 & 0 & \cdots & 1 & q_{1}(z)
\end{array}\right] .
$$

Remark 1. $h_{j}(z):=f_{j}(z) / f_{k}(z)$ is the leading principal minor of $\mathcal{J}(z)$ of order $k-j$. In particular, $h_{0}(z)=\operatorname{det} \mathcal{J}(z)$.
Remark 2. Eigenvalues of the generalized eigenvalue problem

are closely related to properties of $R(z)$.

Generalized Jacobi matrices

$$
\mathcal{J}(z):=\left[\begin{array}{cccccc}
q_{k}(z) & -1 & 0 & \cdots & 0 & 0 \\
1 & q_{k-1}(z) & -1 & \cdots & 0 & 0 \\
0 & 1 & q_{k-2}(z) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{2}(z) & -1 \\
0 & 0 & 0 & \cdots & 1 & q_{1}(z)
\end{array}\right] .
$$

Remark 1. $h_{j}(z):=f_{j}(z) / f_{k}(z)$ is the leading principal minor of $\mathcal{J}(z)$ of order $k-j$. In particular, $h_{0}(z)=\operatorname{det} \mathcal{J}(z)$.
Remark 2. Eigenvalues of the generalized eigenvalue problem

are closely related to properties of $R(z)$.

Generalized Jacobi matrices

$$
\mathcal{J}(z):=\left[\begin{array}{cccccc}
q_{k}(z) & -1 & 0 & \cdots & 0 & 0 \\
1 & q_{k-1}(z) & -1 & \cdots & 0 & 0 \\
0 & 1 & q_{k-2}(z) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{2}(z) & -1 \\
0 & 0 & 0 & \cdots & 1 & q_{1}(z)
\end{array}\right] .
$$

Remark 1. $h_{j}(z):=f_{j}(z) / f_{k}(z)$ is the leading principal minor of $\mathcal{J}(z)$ of order $k-j$. In particular, $h_{0}(z)=\operatorname{det} \mathcal{J}(z)$.
Remark 2. Eigenvalues of the generalized eigenvalue problem

$$
\mathcal{J}(z) u=0
$$

are closely related to properties of $R(z)$.

Jacobi continued fractions

In the regular case,

$$
q_{j}(z)=\alpha_{j} z+\beta_{j}, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \alpha_{j} \neq 0
$$

The polynomials f_{j} satisfy the three-term recurrence relation
$f_{j-1}(z)=\left(\alpha_{j} z+\beta_{j}\right) f_{j}(z)+f_{j+1}(z), \quad j=1, \ldots, r$.

Jacobi continued fractions

In the regular case,

$$
q_{j}(z)=\alpha_{j} z+\beta_{j}, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \alpha_{j} \neq 0
$$

The polynomials f_{j} satisfy the three-term recurrence relation $f_{j-1}(z)=\left(\alpha_{j} z+\beta_{j}\right) f_{j}(z)+f_{j+1}(z), \quad j=1, \ldots, r$.

$$
R(z)=\frac{f_{1}(z)}{f_{0}(z)}=\frac{1}{\alpha_{1} z+\beta_{1}+\frac{1}{\alpha_{2} z+\beta_{2}+\frac{1}{\alpha_{3} z+\beta_{3}+\frac{1}{\ddots}+\frac{1}{\alpha_{r} z+\beta_{r}}}}}
$$

Stieltjes continued fractions

In the doubly regular case,

$$
\begin{aligned}
q_{2 j}(z) & =c_{2 j}, \quad j=1, \ldots\left\lfloor\frac{k}{2}\right\rfloor \\
q_{2 j-1}(z) & =c_{2 j-1} z, \quad j=1, \ldots, r .
\end{aligned}
$$

Stieltjes continued fractions

In the doubly regular case,

$$
\begin{gathered}
q_{2 j}(z)=c_{2 j}, \quad j=1, \ldots\left\lfloor\frac{k}{2}\right\rfloor \\
q_{2 j-1}(z)=c_{2 j-1} z, \quad j=1, \ldots, r . \\
R(z)=\frac{f_{1}(z)}{f_{0}(z)}=\frac{1}{c_{1} z+\frac{1}{c_{2}+\frac{1}{c_{3} z+\frac{1}{\ddots \cdot+\frac{1}{T}}}}, \text { where }} \\
T:= \begin{cases}c_{2 r} & \text { if }|R(0)|<\infty, \\
c_{2 r-1} z & \text { if } R(0)=\infty .\end{cases}
\end{gathered}
$$

Sturm algorithm

Sturm's algorithm is a variation of the Euclidean algorithm

$$
f_{j-1}(z)=q_{j}(z) f_{j}(z)-f_{j+1}(z), \quad j=0,1, \ldots, k,
$$

where $f_{k+1}(z)=0$. The polynomial f_{k} is the greatest common divisor of p and q.
The Sturm algorithm is regular if the polynomials q_{j} are linear.

Sturm algorithm

Sturm's algorithm is a variation of the Euclidean algorithm

$$
f_{j-1}(z)=q_{j}(z) f_{j}(z)-f_{j+1}(z), \quad j=0,1, \ldots, k,
$$

where $f_{k+1}(z)=0$. The polynomial f_{k} is the greatest common divisor of p and q.
The Sturm algorithm is regular if the polynomials q_{j} are linear.

Theorem [Sturm].

$\operatorname{Ind}_{-\infty}^{+\infty}\left(\frac{f_{1}}{f_{0}}\right)=n-2 V\left(h_{0}, \ldots, h_{n}\right)$ where h_{k} is the leading coefficient of f_{k}.

Cauchy indices

Definition.

$$
\operatorname{Ind}_{\omega}(F):=\left\{\begin{array}{lll}
+1, & \text { if } \quad F(\omega-0)<0<F(\omega+0) \\
-1, & \text { if } \quad F(\omega-0)>0>F(\omega+0)
\end{array}\right.
$$

is the index of the function F at its real pole ω of odd order.

Theorem [Gantmacher].

If a rational function R with exactly r poles is represented by a series

$$
\begin{gathered}
R(z)=s_{-1}+\frac{s_{0}}{z}+\frac{s_{1}}{z^{2}}+\cdots \\
\operatorname{lnd}_{-\infty}^{+\infty}=r-2 V\left(D_{0}(R), D_{1}(R), D_{2}(R)\right.
\end{gathered}
$$

then

Cauchy indices

Definition.

$$
\operatorname{Ind}_{\omega}(F):=\left\{\begin{array}{lll}
+1, & \text { if } \quad F(\omega-0)<0<F(\omega+0) \\
-1, & \text { if } \quad F(\omega-0)>0>F(\omega+0)
\end{array}\right.
$$

is the index of the function F at its real pole ω of odd order.

Theorem [Gantmacher].

If a rational function R with exactly r poles is represented by a series

$$
\begin{gathered}
R(z)=s_{-1}+\frac{s_{0}}{z}+\frac{s_{1}}{z^{2}}+\cdots, \quad \text { then } \\
\operatorname{lnd}_{-\infty}^{+\infty}=r-2 V\left(D_{0}(R), D_{1}(R), D_{2}(R), \ldots, D_{r}(R)\right)
\end{gathered}
$$

Hankel and Hurwitz matrices

Let $R(z)$ be a rational function expanded in its Laurent series at ∞

$$
R(z)=s_{-1}+\frac{s_{0}}{z}+\frac{s_{1}}{z^{2}}+\frac{s_{2}}{z^{3}}+\cdots
$$

Introduce the infinite Hankel matrix $S:=\left[S_{i+j}\right]_{i, j=0}^{\infty}$ and consider the leading principal minors of S :

These are Hankel minors or Hankel determinants.

Hankel and Hurwitz matrices

Let $R(z)$ be a rational function expanded in its Laurent series at ∞

$$
R(z)=s_{-1}+\frac{s_{0}}{z}+\frac{s_{1}}{z^{2}}+\frac{s_{2}}{z^{3}}+\cdots
$$

Introduce the infinite Hankel matrix $S:=\left[s_{i+j}\right]_{i, j=0}^{\infty}$ and consider the leading principal minors of S :

$$
D_{j}(S):=\operatorname{det}\left[\begin{array}{ccccc}
s_{0} & s_{1} & s_{2} & \ldots & s_{j-1} \\
s_{1} & s_{2} & s_{3} & \ldots & s_{j} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
s_{j-1} & s_{j} & s_{j+1} & \ldots & s_{2 j-2}
\end{array}\right], \quad j=1,2,3, \ldots .
$$

These are Hankel minors or Hankel determinants.

$$
\text { Let } R(z)=\frac{q(z)}{p(z)}, \quad \begin{aligned}
& p(z)=a_{0} z^{n}+\cdots+a_{n}, \quad a_{0} \neq 0 \\
& q(z)=b_{0} z^{n}+\cdots+b_{n}
\end{aligned}
$$

For each $j=1,2, \ldots$, denote

$$
\nabla_{2 j}(p, q):=\operatorname{det}\left[\begin{array}{cccccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{j-1} & a_{j} & \ldots & a_{2 j-1} \\
b_{0} & b_{1} & b_{2} & \ldots & b_{j-1} & b_{j} & \ldots & b_{2 j-1} \\
0 & a_{0} & a_{1} & \ldots & a_{j-2} & a_{j-1} & \ldots & a_{2 j-2} \\
0 & b_{0} & b_{1} & \ldots & b_{j-2} & b_{j-1} & \ldots & b_{2 j-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{0} & a_{1} & \ldots & a_{j} \\
0 & 0 & 0 & \ldots & b_{0} & b_{1} & \ldots & b_{j}
\end{array}\right] .
$$

These are the Hurwitz minors or Hurwitz determinants.

Theorem [Hurwitz].

Let $R(z)=q(z) / p(z)$ with notation as above. Then

$$
\nabla_{2 j}(p, q)=a_{0}^{2 j} D_{j}(R), \quad j=1,2, \ldots
$$

Corollary.

Let $T(z)=-1 / R(z)$ with notation as above. Then

Theorem [Hurwitz].

Let $R(z)=q(z) / p(z)$ with notation as above. Then

$$
\nabla_{2 j}(p, q)=a_{0}^{2 j} D_{j}(R), \quad j=1,2, \ldots
$$

Corollary.

Let $T(z)=-1 / R(z)$ with notation as above. Then

$$
D_{j}(S)=s_{-1}^{2 j} D_{j}(T), \quad j=1,2, \ldots
$$

Even and odd parts of polynomials

Let p be a real polynomial
$p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=: p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right), \quad a_{0}>0, a_{i} \in \mathbb{R}$,
Let $n=\operatorname{deg} p$ and $m=\left\lfloor\frac{n}{2}\right\rfloor$
for $n=2 m$

for $n=2 m+1$

Even and odd parts of polynomials

Let p be a real polynomial
$p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=: p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right), \quad a_{0}>0, a_{i} \in \mathbb{R}$,
Let $n=\operatorname{deg} p$ and $m=\left\lfloor\frac{n}{2}\right\rfloor$.
for $n=2 m$

for $n=2 m+1$

Even and odd parts of polynomials

Let p be a real polynomial
$p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=: p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right), \quad a_{0}>0, a_{i} \in \mathbb{R}$,
Let $n=\operatorname{deg} p$ and $m=\left\lfloor\frac{n}{2}\right\rfloor$. for $n=2 m$

$$
\begin{aligned}
& p_{0}(u)=a_{0} u^{m}+a_{2} u^{m-1}+\ldots+a_{n-2} u+a_{n} \\
& p_{1}(u)=a_{1} u^{m-1}+a_{3} u^{m-2}+\ldots+a_{n-3} u+a_{n-1}
\end{aligned}
$$

for $n=2 m+1$

Even and odd parts of polynomials

Let p be a real polynomial
$p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=: p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right), \quad a_{0}>0, a_{i} \in \mathbb{R}$,
Let $n=\operatorname{deg} p$ and $m=\left\lfloor\frac{n}{2}\right\rfloor$.
for $n=2 m$

$$
\begin{aligned}
& p_{0}(u)=a_{0} u^{m}+a_{2} u^{m-1}+\ldots+a_{n-2} u+a_{n} \\
& p_{1}(u)=a_{1} u^{m-1}+a_{3} u^{m-2}+\ldots+a_{n-3} u+a_{n-1}
\end{aligned}
$$

for $n=2 m+1$

$$
\begin{aligned}
& p_{0}(u)=a_{1} u^{m}+a_{3} u^{m-1}+\ldots+a_{n-2} u+a_{n}, \\
& p_{1}(u)=a_{0} u^{m}+a_{2} u^{m-1}+\ldots+a_{n-3} u+a_{n-1} .
\end{aligned}
$$

Associated function and the main theorem of stability

Introduce the function associated with the polynomial $p(z)=p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right)$

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}
$$

Associated function and the main theorem of stability

Introduce the function associated with the polynomial $p(z)=p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right)$

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}
$$

Definition.

A polynomial is Hurwitz stable if all its zeros lie in the open left half-plane.

Main Theorem of Stability

A polynomial $z \mapsto p(z)=p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right)$ is Hurwitz stable if and only if

Associated function and the main theorem of stability

Introduce the function associated with the polynomial $p(z)=p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right)$

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}
$$

Definition.

A polynomial is Hurwitz stable if all its zeros lie in the open left half-plane.

Main Theorem of Stability

A polynomial $z \mapsto p(z)=p_{0}\left(z^{2}\right)+z p_{1}\left(z^{2}\right)$ is Hurwitz stable if and only if

$$
\Phi(u)=\beta+\sum_{j=1}^{m} \frac{\alpha_{j}}{u+\omega_{j}}, \quad \beta \geqslant 0, \alpha_{j}, \omega_{j}>0, m=\left\lfloor\frac{n}{2}\right\rfloor .
$$

Hurwitz and Lienard-Chipart Theorems

Hurwitz Theorem

A polynomial p of degree n is Hurwitz stable if and only if

$$
\Delta_{1}(p)>0, \Delta_{2}(p)>0, \ldots, \Delta_{n}(p)>0 .
$$

Lienard and Chipart Theorem

A polynomial p of degree n is Hurwitz stable if and only if

and

Hurwitz and Lienard-Chipart Theorems

Hurwitz Theorem

A polynomial p of degree n is Hurwitz stable if and only if

$$
\Delta_{1}(p)>0, \Delta_{2}(p)>0, \ldots, \Delta_{n}(p)>0 .
$$

Lienard and Chipart Theorem

A polynomial p of degree n is Hurwitz stable if and only if

$$
\Delta_{n-1}(p)>0, \Delta_{n-3}(p)>0, \Delta_{n-5}(p)>0, \ldots
$$

and

$$
a_{n}>0, a_{n-2}>0, a_{n-4}>0, \ldots
$$

Stable polynomials and Stieltjes continued fractions

Using properties of functions mapping the UHP to LoHP and the main theorem of stability, one can obtain

Stieltjes criterion of stability

A polynomial p of degree n is Hurwitz stable if and only if its associated function Φ has the following Stieltjes continued fraction expansion

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}=c_{0}+\frac{1}{c_{1} u+\frac{1}{c_{2}+\frac{1}{c_{3} u+\frac{1}{\ddots \cdot+\frac{1}{c_{2 m}}}}}}
$$

where $c_{0} \geqslant 0$ and $c_{i}>0, i=1, \ldots, 2 m$, and $m=\left\lfloor\frac{n}{2}\right\rfloor$.

Further criteria of stability

> Theorem.
> A polynomial p of degree n is Hurwitz stable if and only if the infinite Hankel matrix $S=\left\|s_{i+j}\right\|_{i, j=0}^{\infty}$ is a sign-regular matrix of rank m, where $m=\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem.

A nolynomial $f=p\left(z^{2}\right)+z q\left(z^{2}\right)$ is stable if and only if its infinite Hurwitz matrix $H(p, q)$ is totally nonnegative.

Further criteria of stability

Theorem.

A polynomial p of degree n is Hurwitz stable if and only if the infinite Hankel matrix $S=\left\|s_{i+j}\right\|_{i, j=0}^{\infty}$ is a sign-regular matrix of rank m, where $m=\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem.

A polynomial $f=p\left(z^{2}\right)+z q\left(z^{2}\right)$ is stable if and only if its infinite Hurwitz matrix $H(p, q)$ is totally nonnegative.

Factorization of infinite Hurwitz matrices

Theorem

If $g(z)=g_{0} z^{l}+g_{1} z^{l-1}+\ldots+g_{l}$, then

$$
\begin{aligned}
& H(p \cdot g, q \cdot g)=H(p, q) \mathcal{T}(g), \\
& \mathcal{T}(g):=\left[\begin{array}{cccccc}
g_{0} & g_{1} & g_{2} & g_{3} & g_{4} & \ldots \\
0 & g_{0} & g_{1} & g_{2} & g_{3} & \ldots \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots \\
0 & 0 & 0 & g_{0} & g_{1} & \ldots \\
0 & 0 & 0 & 0 & g_{0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
\end{aligned}
$$

Here we set $g_{i}=0$ for all $i>l$.

Another factorization

Theorem

If the Euclidean algorithm for the pair p, q is doubly regular, then $H(p, q)$ factors as

$$
\begin{gathered}
H(p, q)=J\left(c_{1}\right) \ldots J\left(c_{k}\right) H(0,1) \mathcal{T}(g), \\
J(c):=\left[\begin{array}{cccccc}
c & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & c & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & c & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] H(0,1)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{gathered}
$$

Stable polynomials and Stieltjes continued fractions

Using properties of functions mapping the UHP to LoHP and the main theorem of stability, one can obtain

Stieltjes criterion of stability

A polynomial p of degree n is Hurwitz stable if and only if its associated function Φ has the following Stieltjes continued fraction expansion

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}=c_{0}+\frac{1}{c_{1} u+\frac{1}{c_{2}+\frac{1}{c_{3} u+\frac{1}{\ddots \cdot+\frac{1}{c_{2 m}}}}}}
$$

where $c_{0} \geqslant 0$ and $c_{i}>0, i=1, \ldots, 2 m$, and $m=\left\lfloor\frac{n}{2}\right\rfloor$.

Stable polynomials and Jacobi continued fractions

"Jacobi" criterion of stability

A polynomial p of degree n is Hurwitz stable if and only if its associated function Φ has the following Jacobi continued fraction expansion

$$
\Phi(u)=\frac{p_{1}(u)}{p_{0}(u)}=-\alpha u+\beta+\frac{1}{\alpha_{1} u+\beta_{1}-\frac{1}{\alpha_{2} u+\beta_{2}-\frac{1}{\ddots \cdot+\frac{1}{\alpha_{n} u+\beta_{n}}}},}
$$

where $\alpha \geq 0, \alpha_{j}>0$ and $\beta, \beta_{j} \in \mathbb{R}$.

Other topics

- Stielties, Jacobi, other continued fractions. Padé approximation
- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- 'Hurwitz rational and' meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions. Padé approximation
- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurwitz rational and meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions. Padé approximation
- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- 'H'urwitz rational and' meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions. Padé approximation
- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurwitz rational and meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions.

Padé approximation

- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurvitz rational and meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions.

Padé approximation

- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurwitz rational and meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions.

Padé approximation

- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurwitz rational and meromorphic functions

Other topics

- Stielties, Jacobi, other continued fractions.

Padé approximation

- Orthogonal polynomials. Moment problems
- Nevanlinna functions
- Pólya frequency sequences and functions
- Laguerre-Pólya class and its generalizations
- Total nonnegativity
- Matrix factorizations
- Hurwitz rational and meromorphic functions

Zero localization

... is everywhere

- Zeros of entire and meromorphic functions from number theory (e.g., Riemann ζ-function and other L-functions)
- Zeros of partition functions for Ising, Potts and other models of statistical mechanics (Lee-Yang program)
- Zeros arising as eigenvalues in matrix/operator eigenvalue problems (e.g., random matrix theory)
- Recent generalizations of stability and hyperbolicity to the multivariate case and applications to Pólya-Schur-Lax type problems (Borcea, Brändén, B. Shapiro, etc.)

Zero localization

... is everywhere

- Zeros of entire and meromorphic functions from number theory (e.g., Riemann ζ-function and other L-functions)
- Zeros of partition functions for Ising, Potts and other models of statistical mechanics (Lee-Yang program)
- Zeros arising as eigenvalues in matrix/operator eigenvalue problems (e.g., random matrix theory)
- Pecent generalizations of stability and hyperbolicity to the multivariate case and applications to Pólya-Schur-Lax type problems (Borcea, Brändén, B. Shapiro, etc.)

Zero localization

... is everywhere

- Zeros of entire and meromorphic functions from number theory (e.g., Riemann ζ-function and other L-functions)
- Zeros of partition functions for Ising, Potts and other models of statistical mechanics (Lee-Yang program)
- Zeros arising as eigenvalues in matrix/operator eigenvalue problems (e.g., random matrix theory)
- Recent generalizations of stability and hyperbolicity to the problems (Borcea, Brändén, B. Shapiro, etc.)

Zero localization

... is everywhere

- Zeros of entire and meromorphic functions from number theory (e.g., Riemann ζ-function and other L-functions)
- Zeros of partition functions for Ising, Potts and other models of statistical mechanics (Lee-Yang program)
- Zeros arising as eigenvalues in matrix/operator eigenvalue problems (e.g., random matrix theory)
- Recent generalizations of stability and hyperbolicity to the multivariate case and applications to Pólya-Schur-Lax type problems (Borcea, Brändén, B. Shapiro, etc.)

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703
- "Lectures on the Routh-Hurwitz problem", Yu. S. Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.
- "Generalized Hurwitz matrices, multiple interlacing and forbidden sectors of the complex plane", O. H., S. Khrushchev, O. Kushel, M. Tyaglov, coming soon
Thank you!

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703

Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.

- "Generalized Hurwitż matrices, multiple interlacing and forbidden sectors of the complex plane", O. H., S. Khrushchev, O. Kushel, M. Tyaglov, coming soon

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703
- "Lectures on the Routh-Hurwitz problem", Yu. S. Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.
- "Generalized Hurwitz matrices, multiple interlacing and forbidden sectors of the complex plane", О. H., S. Khrushchav, O Kushal, M Tyaglov, coming soon

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703
- "Lectures on the Routh-Hurwitz problem", Yu. S. Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.
- "Generalized Hurwitz matrices, multiple interlacing and forbidden sectors of the complex plane", O. H., S. Khrushchev, O. Kushel, M. Tyaglov, coming soon

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703
- "Lectures on the Routh-Hurwitz problem", Yu. S. Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.
- "Generalized Hurwitz matrices, multiple interlacing and forbidden sectors of the complex plane", O. H., S. Khrushchev, O. Kushel, M. Tyaglov, coming soon

References

- "Structured matrices, continued fractions, and root localization of polynomials", O. H. \& M. Tyaglov, SIAM Review, 54 (2012), no.3, 421-509. arXiv:0912.4703
- "Lectures on the Routh-Hurwitz problem", Yu. S. Barkovsky, translated by O. H. \& M. Tyaglov, arXiv:0802.1805.
- "Generalized Hurwitz matrices, multiple interlacing and forbidden sectors of the complex plane", O. H., S. Khrushchev, O. Kushel, M. Tyaglov, coming soon

Thank you!

